
Finite-difference solution of Wave Equation in Tesseral

© 2012 Tesseral Technologies -User Documentation for advanced learning- 1

Wave Equation

Finite-difference Calculation in Tesseral
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1 Introduction

Wave propagation depends on the static properties of background medium. For seismic (sound)
waves, these properties consist of:

P-wave velocity Vp, shear-wave velocity Vs , density ρ. These properties may be used to
describe macro-model (bulk model) of the medium.

Other medium properties related to micro-model (subtle model) of the medium: anisotropy

– usually described by Thomsen parameters , ,  and , α - angle of symmetry axis tilt
and azimuth, absorption – usually described by Q-factor, micro-fracturing, porosity and etc;

Wave Propagation can be characterized using dynamic parameters, such as stresses (or pressures)
and instantaneous particle velocity (displacement) – stress-displacement formulation.

Relationships between medium properties and dynamic parameters of wave propagation are
defined by differential equations, which can be solved numerically to simulate the real process of
wave propagation.

In numerical solution of differential wave equations, wave propagation is characterized as a
wavefield W(p), which is a vector function of 3D space (x, y, z) and time (t) variables:

W(p)=V(x, y, z, t).

For numerical computation, wave field is characterized as a set of parameters which are usually
distributed on rectangular (orthogonal) grids oriented along X, Y, Z directions in Cartesian
coordinate system. Medium properties are also discretized into such kind of grid.
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Wave equation and finite-difference modeling

Wave equation

is the differential equation for wave-propagation process, where x can be a scalar or vector value,
e.g. (x1, x2, x3) catertsian coordinates (usually denoted as x, y, z).

Let’s consider 2 (differential) variables τ and U (stress & displacement) along the line with evenly-
distributed discrete points i = ..., -2, -1, 0, 1, 2, .... . Variables τ and U be allocated in even and odd
discrete points, respectively.

Relationship between variables τ and U is also determined by the 1st-order differnetial equation
(2), which can be solved using the staggered grid as shown below:

i= ... -4 , -3, -2, -1, 0, 1, 2, 3, 4, ...
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For each of variables τ and U, equation (2.2) corresponds to wave equation (1). And therefore
solving equation (2) also corresponds to solving wave equation (1). Each time step of computations
k=0, 1, 2, ... may be interpreted as process of wave propagation calculated in time increments. In

The integral form of equation (2) can be written as: (2.1) is differentiated twice by t:
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(2.2)

t – time step of computations k=0,1,2,...

(2)

(2.1)

differentiation interval x in 1D staggered string
...  τ-4 , U-3 , ...

(1.1)
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terms of equation (2), each time step consists of two computation tacts: 0- symmetry and 1-
symmetry ([0] , [1]).^

^Note: at numerical simulation of source point from which wavefield is starting propagating,
formally it is assumed that 1 tact= Δt/2).

ai and bi are static medium properties distributed alnong spatial axis x. If the differentiation base
Δx is fixed (grid) and then time step Δt  is also determined

Medium properties ai and bi can be scaled and used for computations on grid. Scaling constant G
is a constant of the grid progression and has the unit as velocity (m/sec).

This is a scheme of finite-difference calculations of central type (symmetric to point where variable
is calculated) and formally can be referred to (numerical) 2nd order approximations*. Equation (2.2)
shows that solving equation (2) is asymptotically identical to solving wave equation (1) and
accuracy of calculations is limited by the finiteness of Δx and Δt , and also by the precision of
numerical representation and arithmetic operations for τ and U.

* Note : formally, each of left- and right-side finite-difference approximation of differential
operator is of 1st-order precision, central difference (2), which is their sum – is of 2nd order [2].

Equation (2) is the basis of the staggered cell (referred as staggered grid in literature [1])
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computation scheme for finite-difference solving the wavefield propagation by discrete steps Δt on
differentiation base Δx. On Fig. 2.1, the distributed cell is represented by 2 adjacent nodes.
Because each of those 2 adjacent nodes corresponds to different properties and variables, the
notion of nodes symmetry is introduced. Along the direction of differentiation (here by X) even
nodes (i=0, 2, ...) have symmetry [0] (τ and a), odd nodes (i=1,3, ...) have symmetry [1] (U and b).
Distance between nodes is called as a grid cell size (here Δx/2). This discrete 1D representation of 
wave equation (2) can be extended to 2D and 3D cases.

There can be different approximations to wave equation depending on which physical properties
of the medium are taken into account: scalar (P-velocity only) acoustic (P-velocity and density),
elastic (additionally – S-velocities), anisotropic (additionally – Thompsen’s parameters and up to 3
systems of micro-fracturing), visco-elastic (additionally to elastic – Q-factor).

References

1 Virieux, J., 1986, wave propagation in heterogeneous media: Velocity-stress finite-
difference method: Geophysics, 51, 901.

2 Jaun A., 1999, Numerical methods for partial differential equations: Royal Institute of
Technology, Stockholm.
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2 Wavefield parameters

Seismic survey consists of seismic signal recorded by receivers for particular sources. Receiver and
sources coordinates represent survey geometry.

Displacement (or instantaneous particle velocity) U is a vector (Ux ,Uy ,Uz) of particle movements as
function of time t along each of axis X,Y, Z. For each receiver (geophone) position, variables Ux(t),
Uy(t), Uz (t) represent the components (C) for each of 3 directions. In land surveys, maybe only
component Uz is recorded (1C observations) or all 3 components Ux ,Uy ,Uz is recorded (3C –
observations).

Stress (or pressure) τ is usually recorded in marine surveys by hydrophones.

The point where modeled wave start to propagate is interpreted as the source generating the wave
field.

Depending on the no. of dimensions present in a wave-field computation, wave field numerical
approximation can categorized into 1D, 2D and 3D cases. Each of 3 cases can have different
appropriate applications to seismic data processing and interpretation.

3 Spatial and temporal step in Tesseral calculation

 Minimum number of differentiation bases per wavelength: BaseWave=10

 Length of the computation grid differentiation base d=(Vp[min]/Ft)/ BaseWave;

 Cell size (default) Δxdef=d/2 (1 cell=d/2 in the computation staggered cell used in
Tesseral)

 Time step (default) of computations: Δtdef=d /(Vp[max]*Stability)

where:

Vp[min] – minimum compression wave velocity; in case of elastic (anisotropic, vicso-)
approximation Vp[min] is divided by √2~=1.414; 

Vp[max] – maximum compression wave velocity;

Ft – Threshold (maximum) frequency of the source wavelet;

Stability – stability constant = sqrt(2)+1/BaseWave ~ 1.5

 From (4): Δddef/ Δtdef= Vp[max]*Stability

For actual (defined by user and/or by program) d and t must be observed:

G must be ≤ Vp[max]*Stability

where: G=d/t - is a constant of grid progression;

4 Tesseral solutions for accelerating computation

 Simple differentiation formula.**

**Note: from the staggered string property (1.1), it may be shown that building higher-order
central difference scheme may be less appropriate due to asymptotic identity between
formulae (1) and (2), as it is shown with (2.1) and (2.2).
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 Because of the pattern of data distribution on the staggered computation grids, the data
needed for calculations is packed much more densely.

 Absorption scheme for attenuating the artificial reflections from the grid borders (more than
99% of incoming energy to the border is absorbed) allows to have narrow absorbing margins
and use much less computation resources for this purpose.

 Controlled calculation area which expands with the propagation of the waves.

Efficiency improvement in Tesseral releases

5 Differential equations of 2D wave motion in Tesseral

For the stress-displacement representation of wave equation, the distributed cell representation
(discrete form) is as below.
For more theory, please also see 3_Wavefield Theory for Multiparameter Medium in Tesseral.pdf

2D Calculations Plane in Tesseral

 τ nm – stress component ; U1,2,... – displacement (instantaneous particle velocity)

1 Benchmark model 3x3 km and 40 Hz signal
frequency fofor 32-bit application;

2 Added one processor (parallelized x 2).

3 Increased word length (64-bit application).

4 Optimizations made for the internal loops and grid
data distribution

5 Parallel computation on multi-core processors

6 Parallel computation on GPU-cards (x15-20 time
reduction)
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5.1 Calculations on Staggered Cell

Let consider 3D distributed cell in a Cartesian coordinates X,Y,Z (figure above):

In 2D and 3D numerical approximations of wave equation, variables τ and U are allocated onto
particular nodes of distributed cell (grid) and participate in numerical (finite-difference)
differentiation, in general case, along all directions (in 2D case - X,Y(Z), 3D case - X,Y,Z). From
simple considerations such as extending the numerical method (2) to 2D and 3D cases, it follows
that, in 3D case, variables τ and medium properties a must be allocated in nodes with symmetry:

(0,0,0), (1,1,0), (1,0,1) and (0,1,1) (symmetries are notated by axis (x,y,z)).
Variables U and (medium) properties b are allocated in nodes with symmetry (1,0,0),
(0,1,0), (0,0,1) and (1,1,1).

In general, the properties a, b and the variables τ, U which are spaced in nodes of a distributed cell
may be a vector, i.e. consist of several member variables, each of which is involved in the
differentiation operator along different directions in a different way. Such distributed vector along
different coordinate directions are called tensors.

If the properties (of simulated medium) in each node of a distributed cell consist of a single value
(scalar distribution), this corresponds to the properties of isotropic medium (locally, the velocity of
the wave field propagation does not depend on the direction).

If properties (of simulated medium) at some node (nodes) of distributed cell consist of vector
values (vector distribution), this corresponds to the properties of anisotropic medium (locally, the
velocity of the wave field depends on its propagation direction).

If a variable (usually U) in each node of the distributed cell consist of a single value, in mathematical
terms, it is called a scalar field.

If a variable (typically τ) at some node (nodes) of distributed cell consist of a vector of values, it is
mathematically denoted as a vector field.

Since the computational scheme of equation (2) simulates a physical process, it is important to
comply with certain principles of invariance:

 Invariance with respect to the order of differentiation by the coordinates

 Approximation (in this case) to the wave equation (continuation of the wave field in time), in the
terms of physics, means also compliance with the law of energy conservation (for the process in
time).

 Transfer (across the grid) of stress τ and the displacement velocity U for some time must be
invariant to the time step of calculations (if we account for the stability of calculations, then starting
with step less than or equal to Δtmax). Otherwise the linearity with respect to time is violated, and
accordingly, the law of conservation of energy is not complied with.

 The expression "invariance with respect to the order of differentiation by the coordinates" (here)
means that, within one time step of calculations, the results are invariant to the order of
intermediate calculations. This invariance is achieved only if τ and U are calculated separately in a
single tact for each time step.

 If the results are invariant with respect to the order of the intermediate calculations within a time
step of computations and only (linearly) depend on the magnitude of this step, such calculations are
invariant with respect to time step Δt for particular time length. That means that, in term of physics,
the law of energy conservation is observed.
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 The invariance to the orientation of coordinate system

 The system of differential equations leading to a computation scheme of the distributed cell (type
(2)) must remain invariant to the replacements within the coordinates system (indexes of variables).

 Obtaining the system of differential equations with such invariant form in some cases may require
the introduction (in the equation) of the additional equations and variable members. Such
additional members shall be an independent from the numeric fields (i.e. not formally belong to the
fields τ or U).

5.2 Acoustic case
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5.3 Elastic case
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