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1 Wave equation theory (2D case)

Equations of wave propagation in elastic medium are derived from the basic equations
below:

Ty = Zcijk,gk, - Hook law.
k.l
ow, ot
pP—=) — - Newton’s second law.
ot T OX;
1 aWk 6W| . . . . .
Eq =&k =—=|—+——| - strain tensor and its relationship with
2\ Ox,  OX,
displacement.
T =Ty - stress tensor.
Cit = Cuij = Cjiu = Cijix - 4-order symmetric elasticity tensor.
w, - is the displacement of medium particles.
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Wavefield Theory for Multiparameter Medium in Tesseral
Velocity-stress wave equations for elastic medium are derived from equations above by
converting displacements to velocities:

oty ou
i oy M
ot 2.Ciw X,

kI
8ui 8Tij
TR
where Uu; is the vector of the displacement velocity.

Elasticity tensorc;, has 81 components. But, because of its symmetry, only 21
components are independent. Tensor c;, can be conveniently described by
symmetric 6x6 matrixa,,, .

Conventionally the relationship between the indices (m or n) of 6x6 symmetric

matrix @, and pairs of the indices (i,j) or (k1) of 4-order tensor c;, is denoted as:

1611, 26>22,36>33,46>23, 56>13,6>12.

For isotropic medium, elasticity matrix a,,, has notation

A+2u A A0 0 0
A A+2u J) 0 0 0
. ) A A+2u 0 0 0
m 0 0 0 u 0 0
0 0 00 x4 0
0 0 00 0 u

In Tesseral package, wavefield calculations are implemented basing on different formal
approximations to physical medium.

1.1 Scalar Modeling

In this case, the physical properties of the medium are described by space-varying
velocity of compression (acoustic) wave V=V(x,,X,) in the XZ-plane and the wave

field is described by displacement velocity vector u = (ul,u3) and pressure .

This approximation of physical medium corresponds to the propagation of acoustic
waves in the medium with constant density (normally, density p is assumed to 1) and
the shear-wave velocity Vs is assumed to be O, i.e., the case of ideal liquid with
constant density.

The wavefield in the ideal liquid with constant density can be described by the system
of differential equations:

- ®
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a,_op

= , 2

ot 0x, @)

@:VZ %+% _ (3)
ot OX, OX,

In conventional way, the scalar equation is given by pressure (stress) and divergence
(dilatation), which measures the expansion or compression of local medium volume.

Let’s differentiate equation 1 with respect to x; , differentiate equation 2 with respect
to x3, and differentiate equation 3 with respect to t. Then we obtain:

ouy _o%p @
otox,  ox?
o’u,  o%p (5)
otox,  0°X,

2 2 2
<3p:v28u1+au3 (6)
ot otox,  otox,

By substituting equation (4) and (5) into (6), we obtain conventional expression of
scalar equation in terms of pressure

10°p _ o*p  o°p

T2 2

+ 7
Voot oxt o oax’ )

Taking into account that from equation (3) we can obtain:

ow, ow -
p=v —2+—|=vidiv(W) = v’0
OX, OX,

where Wis the displacements vector of medium particles, and 6 is divergence

measuring the increasing/decreasing of local medium volume. For constant v, we

obtain:

1% o°9 0%

S T A ®)
Vo ott OX,  OXg

This is the notation of scalar equation in terms of divergence. If v #const, v’0 must

be more complex function, but not®. This means that equation (8) differs from

equation (7) for pressure. Let’s re-write scalar equation in form of particles

displacement. To this end, let’s differentiate equation (1) and equation (2) with respect

to t.We obtain:

o°u, _ 0°p )
ot ox.ot
2 2
0 lis _ op (10)
ot°  Oxyot

3
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Let’s differentiate equation (3) by X;

2 2 2 2
otox, OX, | OX, OX, OX;  OX40%;

Let’s differentiate equation (3) by X,

aW;@q@u@ﬂH{#w+%q

otox, OX, | OX, O, X,OX, X, (12)
Combining equations (9), (11) and (10), (12), we obtain

2 2 2 2
aLZIl:aL %_{_% +V2 au21+au3 (13)
ot OX, \ OX;  OX, OX,”  OX30X

2 2 2 2
al'i"”:al %4_% +V2 aul +_a U23 (14)
ot 0% \ O, OXg OX,0X;  OX,

System of equations (13) and (14), written in terms of particle velocity vector which
usually are measured in the field observations, differs from equation (8), which is
usually applied in wave-equation migration procedure. Equation (8) is the basis for
most seismic processing procedures. Equation (13) and (14) are an approximation to
the wave equation in terms of the particle displacement velocity.

1.2 Acoustic modeling
In this case, medium properties are described by 2-D compression-wave velocity
v =V(x,,x;) and density p(x,, ).

Acoustic wave equation is described by vector of displacement velocity u and scalar
fields of pressures p by the system of differential equations:

o = 1op (15)
ot pox
u, _1ap 5)
ot pox,
@:pvz %4_% ) (17)
ot 0%,  OXg

As in case of scalar modeling (see 1.1), let’s differentiate equation (15) with respect to
X,, equation (16) with respect toX;, and equation (17) with respect to t, then we

obtain:
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5 1
2 o 2
ou __pop +£a_8 (18)
otox, OX, OX, p OX
1
o, 9, op 10%p
s P, -2 F (19)
OtoX;  OXy OX;  p OXq
2 2 2
a—fzpvz o°u, N o°u, (20)
ot Otox,  otox,

By substituting (18) and (19) into equation (20), we obtain the acoustic equation in
terms of pressure:
1 1 1 1
0? O 10 O 107 o’p o % %po
P_ ol _pdp 10| | _pop 10%°p _vz[h p} el _pop, pop

= py —
az X, 0%, p X, Xy OX,  p OX, X, O, OX, OX, X, OX,

As seen from the equation above, spatial derivatives of density appears. If the spatial
derivative of density is close to zero, then the acoustic equation is reduced to scalar
equation.

1.3 Elastic isotropic modeling

Properties of isotropic elastic medium are described by 3 spatial-varying parameters:
compression-wave velocity of vp(xl,x3), shear-wave velocity V,(x,,X,)and density

P(X1’X3)-

From parameters v,V and p , Lame’s parameters can be calculated as
izp(vi—va) and u=pv?, which correspond to elastic constants a, =4,
as, = 1. In case of isotropic elastic approximation, the relationship between the
displacement velocity vector u=(u,,u,) and the stress tensor 7 (i, j =13) is given

by the system of differential equations:

oty ou, ou,
=ay —ta;; —
ot 0%, OX,
ot X, ;
0 ou, adu
L NP e WL (21)
ot OXy 0%,
o, 1 {a +armJ
ot plox, 0x

(0, 0)

ot p OX,  OXg
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1.4 Elastic anisotropic modeling

Here, the medium property is assumed to be monocline type of anisotropy, where the
plane (Xl, X3) is the symmetry plane.

The wavefield in the plane (Xl,xa) depends only on spatial-varying elastic constants

a; (i, j= 1,3,5) and density p.

For time-domain anisotropic elastic modeling, the displacement velocity vector
u=(u,u;) and the stress tensor T (i, j =13) are related by system of differential

equations:

ot 0%, OX4 OX;  OX,

Oty _, Ouy au, 335(%"‘%} (22)

135 Tap—F
ot 0%, 0X4 X, OX;

— %5 -~ T ~ Ay
ot 0%, OX, OXy  OX,
ou_1(omy o)
ot plox, X )

a,_1(0n,  or
ot plox, 0X

Oty _, 0u, ou; (aul ausJ
55

The elastic constants a; of anisotropic medium are calculated based on the

assumption that the medium consist of transversally-isotropic medium with inclined
symmetry axis (TTl), which can include up to 3 fracturing systems, located in parallel
planes.

The physical properties of TTI medium are defined with 7 parameters: p- density;
V,,V,- velocities of propagation of gPand qSV waves along symmetry axis of TTI
medium; &,5,y - Thomsen’s anisotropy parameters; @ - angle of inclination of
symmetry axis with respect to vertical direction.

Each fracture system is described with 3 parameters: fracture intensity AU, AV

n?
(normal and tangential weakness) and angles of inclination with respect to vertical
directiony; (i < 3).

Computation of coefficients of total elastic matrix a;; (i, j =1,3,5) is done in a few

steps.

For transversally isotropic medium with vertical symmetry (VTI), the elasticity matrix is
given as

2
8y =P Ve,

2
Ay =85 =p Vg,
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&y =8y =8y '(1+ 2¢ )'
Ags = g5 '(1+ 2y )r

(22)
a, =a,; — 28,
&3 = \/ [ (1+26 )ay, a55] (855 — 855 ) — 85,
dy; = Q3.
Let’s assume the resultant elasticity matrix is
A=(ay). (23)

To obtain the elasticity matrix which incorporate 3 fracture systems, firstly we need to
obtain the inverse of elasticity matrix A (along with inverse to a,,, a; and ag

values):
C= (cij )u:1 J=AT

Then, the inverse matrix A™" = (cij) is rotated by angle @ by using Bond’s formula

ij=1 6

for compliance matrix. After applying the rotation, the matrix Fz(fij)ij:16 is

obtained. To solve the wave propagation in the symmetry plane of monocline
anisotropic medium, only the coefficients fij are needed:

f, = %(3 +C0s4¢ )Cyy +Cyy )+ %cos 20(cy —Cyy )+ %(1— 0549 )Cos +2C,);
1 1 1
fy= 5(3 +¢0s4¢ )(c,, +Cyy)— Ecos 20(c,, —Cy )+ 5(1_ 0S40 )Cgs +2C,5);

1 1
f,= ECOS 2¢(C12 _C23)+§(C12 + Czs);
fy =Cy;

fip = %(1—0034(0 XCui +Cay —055)+%(3+C054(P ) Cis;
1. 1.
fis =Zsm4¢(cll_2613 +Cq3 _C55)+§5m2§”(cll _CBS);

1 1
f= —ECOSZ(B(CH _C23)+E(C12 +C23);
fys =sin 2¢’(012 _Czs);

1 . 1.
fo = _Zsm 4(Ciy = 2C15 +Cgy —Csg )+ Esm 2¢(c,; )

1 1.
fos = E(l—COS 4o )(Cn —2C;3 +Cyy _C55)+Esm 2¢ (Cll _Css)"' Cos -
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To incorporate each fracture system into elasticity matrix, fracture intensity A" A(ti)

n !

are firstly transformed into coefficients of 6x6 matrix:

£ = _%(1_ cos 4y, )(K O _go )+ %(1+ cos 2y, K 1;
10 = —%(1— cosdy, KO —K® )+ %(1— cos2y, K ©;
£ =%(1—cos41//i KO +%(1+ cosdy, K?;

£0 = %sin 2p, KO + %sin Ay, (KO —KO);

£ :%sin 2p, K —%sin Ay, (KO —KO);

£0) = %(1—0054:/4 KO —K D),

(i) (i)

Where KO ZA—”U) and KU ZA—t(i) .

a’.l.l(l_An ) a44(1_AI )

Then, each of obtained matrixes F; is added into matrix F. The resultant matrix G =F + F;
+F, + Fsis inverted, i.e., A=G™. The values of elements of inverse matrix are then used
as the coefficients in the differential equations, which describe the wave propagation in
anisotropic medium with fracture systems.

For the medium with only one system of fracture whose plane is perpendicular to the
OX axis, the elasticity matrix has the following form:

a,(1-A,) a,1-A,) a,(l-4a,) O 0 0
a‘lz(l_An) azz(l_ngn) 8.23(1—4:An) 0 0 0

A= a13(l_An) a23(1_é/An) a33(l_é’2An) 0 0 0 (27)
0 0 0 a, 0 0
0 0 0 0 ayl-A) 0
0 0 0 0 0 agl-A)

where a; is the elasticity coefficients of surrounding medium, and ' =a,,/a,;.

For the medium with monocline type of anisotropy with X-Z symmetry plane, Elasticity
matrix has the form:

A= (28)
0 0 0 a, 0 ak
a15 a25 a35 0 a55 0
0 0 0 a, 0 ag

8
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Parameters A, and A, have different values for fractured medium with gas-
saturated or fluid-saturated pore.

2
Let’s denote 4 :Cjzv% , and e is the fracturing density in the background medium,
C33 Vp
then for fractured medium with gas-saturated pores:
A, = 4 , (29)
3g(1-9)
_ lee
" 3B-29)
For medium with fluid-saturated fractures:
A, =0, (30)
A =108
3(3—-29)

Presence of fractures leads to seismic anisotropy, whose symmetry axis is normal to
the plane of fractures. If background medium is isotropic, then one can determine
Thomsen’s parameters by formula:

e=-2g(l-9g)A, , (31)
s=-2g[-29)A, +A] ,

__A
7 - 2 ’
n=29(A,-04,) .
For Hudson’s model, one can compute Thomsen’s parameters for gas-saturated pores:
8
__% 32
£=-3 (32)
5o _§e{1+ g<1_29>}
31 (3-2g)1-g)
___ 8
 3@-29)’
37 (3-2g)t-9)
L, 8
3B-9)°
And if pores are filled with fluid, then
c=0; (33)
9
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%%
3(3-2g)

__ 8
33-2g)°

Those formula can be resolved to obtain A

}/:

, and A,, and thus be used for

determining the intensity of fracturing from Thomsen’s parameters.

1.5 Connection of anisotropy parameters and elastic properties
In Tesseral package, each layer usually represents homogeneous anisotropic medium.
Generally, anisotropy is monoclinal with symmetry axis coinciding with the plane of

computations. The anisotropic parameters are taken into account in the Anisotropic
wave-equation approximation.

For fracturing systems in the transversally isotropic medium (Tl), the symmetry axis of
TI-medium or the normal to planes of fracturing are assumed to be within the
computation plane.

Anisotropy parameters are entered in 2 steps:

1) TI-medium anisotropy is described by entering Thomsen’s coefficients ¢, 6, ¥
and angle ¢ of symmetry axis with respect to the vertical direction.

2) For each fracturing system, users then enter the parameters 4, and 4; (no units)
and inclination angle of fracture plane (¢) with respect to the vertical direction.

In Tesseral package, users can add up to 3 fracturing systems into the background
isotropic or TI-medium with tilted symmetry axis.

As known, non-dimensional Thomsen’s parameters are defined according to formulas
below:

2 2
e= C11 — C33 S= (C13 + C44) - (C33 B C44) _ Css B C44

2C,,

2C4;(C33 — Cyy) 2C,,
where Cj; is symmetric 6x6 matrix, containing the coefficients of elasticity
tensor.

Thomsen’s parameters can be found by core measurements or in literature, or
obtained by measuring kinematic parameters of wave field V(0 ), Vgs{ ), Vgsul( O ),
Veoe(@ ). Generally, Thomsen’s parameters vary from -0.5 to 0.5.

Presence of fracturing system in parallel planes, perpendicular to the computation
plane is changing the anisotropy model. In general case, it becomes monoclinal.
Parameters 4, and A4; characterize the intensity of fracturing and thus influence the
kinematic and dynamic properties of the wave field. Parameters 4, and 4; depend on
the fractures density and material filling the pores.

10
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2
qsVv
2
qP

volume of pore space on a unit of the rock volume.

Let’s denote g = and e is the fracturing density, which equal to the average

Parameter 4; can be determined from formula

16e
At = Ny A
3(3—-29)
And A4, depend on the material of filling the pores. If it is gas, then
4e
An = A N
39(1-9)

If it is a fluid, then 4,=0.

Presence of vertical fracturing system in isotropic background medium, leads to seismic
anisotropy, and medium becomes horizontally-isotropic (HTI) with Thomsen’s
parameters depending on the material filling the pores.

If pores are filled with gas, then

8e
E=——,
3
5:_85{1+M]
3. (B-29)(1-0)
B
33-9)
And if poses are filled with fluid, then
=0,
_ 32
3(3—29) '
_ 8
"= T3@-2q)

There are different ways of linking Thomsen’s parameters and fracture system with the
parameters used in wave equation.

Many references can be found in the papers of A. Bakulin, V. Grechko, I. Svankin:

Estimation of fracture parameters from reflection data - Part 1,2,3.
GEOPHYSICS, VOL.65, NO.6 (2000) p.1788-1830.

11
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2 Using Q-factor at Energy attenuation estimations

Absorption decrement A measure the attenuation of the wave on one wavelength. The
quality factor can be expressed as Q=1/A (smaller Quality factor means stronger
absorption).

Quality factor Q can also be defined as
Q:FO/ZG-I

where Fq is frequency of the signal and a is the attenuation parameter and represents
the rate of exponential decay (a quantity is said to be subject to exponential decay if it
decreases at a rate proportional to its value) of the wave energy (e.g., after an initial
impulse). A higher quality factor means a smaller attenuation.

2.1 From Wikipedia
The free encyclopedia http://en.wikipedia.org/wiki/Q factor

Exponential decay means that a quantity decreases at a rate proportional to its value.
Mathematically, this can be expressed as the following differential equation, where N is
the quantity and A is a positive number called the decay constant.

dN
— = —=AN.
dt
The solution to this equation (see below for derivation) is:
N(t)= Nge .

Here N(t) is the quantity at time t, and Ny = N(0) is the initial quantity at time t = 0.

2.2 Solution of the differential equation of exponential decay

The equation that describes exponential decay is

dN (t) _ .
T —AN (1)

After re-arranging,

dN(t)

N = —Adt.

12
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After integrating, we have

InN(t)= -AXt+C

where Cis the integration constant, and hence
N(t) =e“e™ = Nge™

where Np = e© is obtained by evaluating the equation at t = 0, as Ny is the quantity at ¢
=0.

This equation is commonly used to describe exponential decay. Any the decay constant
A is sufficient to characterize the decay. The notation A for the decay constant is a
remnant of the usual notation for an eigenvalue. In this case, A is the eigenvalue of the
opposite of the differentiation operator with N(t) as the corresponding eigenfunction.
The unit of decay constant is s™.

Note: In general case, quality factor Q depends on the frequency content of the seismic
wave propagating in visco-elastic medium, which is simulated using corresponding
visco-elastic wave-equation approximation. Quality factor Q affect the velocity
dispersion (wave is scattered or distorted as function of frequency). Usually, it is
assumed that frequency band is narrow (for the wavelet’s frequency band used in the
numerical modeling is narrow). And under this assumption, the attenuation effect is
taken into account by using the quality factor at peak frequency Fo of the source
wavelet. It may be called as frequency-band independent or Fp-approximation of
energy attenuation.

For some particular modeling tasks such approximation may be considered as too
simplifying this wave propagation phenomenon, when there is need to study influence
of the medium absorption at deeper level of modeling of frequency dependent
influence of attenuating properties (Q-factor parameter) of the medium. The visco-
elastic approximation allows to model such complex effects of wave propagation as
frequency dependent wave attenuation and velocity dispersion caused by absorbing
properties of the medium.

3 Modeling wave fields in 2D visco-elastic isotropic medium

Note: The numerical computation of seismic wavefield in linear viscoelastic media is
complicated by the existence of convolution integrals in the governing equations. The
problem can be solved by approximating each continuous relaxation spectrum by a
discrete one, whose corresponding complex modulus is a rational function of
frequency. The convolution integrals can then be eliminated by introducing a sequence
of variables, with each satisfying a first order differential equation in time (Day and
Minster, 1984; Emmerlich and Korn, 1987; Carcione et al., 1988). The resulting system
of governing differential equations can then be solved numerically in various ways.

During wave propagation in a real geological medium, energy loss is caused by internal
friction. Intensity of energy loss is characterized by Q value. For a plane wave with
frequency @ propagating along X direction with velocityv, the amplitude of this
plane wave can be calculated as:

a(x)=a(0)exp [—%} =a(0)exp [—%}

© 2012 Tesseral Technologies -User Documentation -Advanced learning-
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Wherex=vt, a(x) isthe wave amplitude in location X or at timet.

. . . 27
This formula means that, after propagating over a period T =—— or a wavelength
@

A= @, amplitude of plane wave is attenuated by exp{—ﬁ} times.
w

Rock physics study shows that in broad frequency range such as 102 —10> Hz, Q
value practically is constant.

Calculation of wave field for 2D absorbing isotropic medium is based on solving
following differential equation by finite-difference method

o, 0oy N 004,

ot Ax O%g

v, _ 08, 95,

Pot " ox, | ox,
06,

_ 5 D D —2a—=2+>r,
at axl 6X3 3 1=1
- L
66132/} %4_% +Zr1|3
ot OX;  OX =
- L
6533=7} %4-% -2 1+Zr3|3
ot aX1 6X3 ‘=
where
N L ,P N L ;S
T=pNg, p=pVZ, ﬁzn(Z—g'—L+1j, g:u(z—d—ul}
[ =1 T

th, 7, 74 arerelaxation times for - absorption law (/=1,...,L).

For variables rij' are used following formulas

o, (N ov, oV, ) ov.
Lo (A )| 222 )=
ot Ty ( ) ox O, (7 ﬂ)axs
ony 1] v, | v

8 (i )| =,

CEEN (# =) ox, %

| -
Oy _ 1 o+ (7 - 7) My, OV —Z(ﬁ'—u)%
ot Ts | 0%, 0%, 0%,

where
P s
~1 ~1 T
T &l , ,U &l
Ts Tsi

Relaxation times [, 7}, 7, are tuned by the program in a way to secure independency
of Q. and Qg with respect to frequency @ in a wide range. To run modeling with

absorption, users need to input signal peak frequency f,, values of Q, and Q; for
each polygon and the number of absorption laws L.

14
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Inside the program, relaxation times is automatically calculated to ensure that
frequency range [a)beg,a)end] will be evenly covered in the logarithmic scale by

frequencies @,...,,_ and for each of them, relaxation times are calculated as

1 1 1
Ty =—| I+—= =1,

2 Qo Qpo
1

2
T

7

sl
s _ 1+ ao7yQq

el — :
@ Qg — 0’7
1
The program is using values @, =§a)o, 0,4 =8m,. @, isthe peak frequency of the

source wavelet.
Parameters Q,, and Q,, are consequently tuned in a least-square sense by

minimizing the following objective functions &, andegg:

&p = T (QP (co)—QP)2 do,
= ] (@ (0)-Q,f do,
whereeg

_ Re(gp (@)
) ina, 0))

~ Re(q; ()
%) in(a, (o)
and
0 (0)- Sl L
q(a))=lz—i:z)’i: L+l

Presence of absorption causes velocity dispersion or frequency-dependant velocity
V,(®) andv,(w). Forideal case Q = const, these functions are logarithmic

vrniefn( )
worsisn(z )

where @, and o, are some fixed frequencies.

The modeling is based on absorption laws

Ve (a)) =V, Re /0, (a))
Vs (@) =Vs Re /g (@)
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Because of(Q,(0)=0s(0)=1, soV,(0)=V,, V;(0)=Vs - velocities specified in a
medium model polygons.

3.1 Dependency of Q(w) and V() on angular frequency.

For different types of waves and number of absorption laws L =1,3,5, the dependency
of Q(a)) and V (a)) on angular frequency is shown on the figure below, where
@, =27 -40Hz, V, =2000 m/s and V =1100 m/s are used.

(a) (d)

(c) (f)
Fig.1. Left: the dependency of Q-factor values on circular frequency for primary (red)
and shear (blue) waves using different number of absorption laws: (a) — 1 law; (b) -3
laws; (c) — 5 laws. Right: the dependency of velocity values on circular frequency for
primary (red) and shear (blue) waves using different number of absorption laws: (d) — 1
law; (e) -3 laws; (f) — 5 laws. Green and pink lines show constant Q values (left) and
velocity logarithmic dependency (right) for primary and shear waves.

3.2 Damping Mechanisms

Damping mechanism for viscoelastic medium can be illustrated using the picture
below:

16
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I I I —
TeMTeMeT e
| | | | |

Let’s press and then release plates A and B. Springs work to return to initial state, but
pistons slow down this process. The L number of damping mechanisms (here) is 5.

For each frequency, each defined mechanism has maximum relaxation time (in e
times). Conventionally this time is called relaxation time for a given mechanism. There
are 2 types of relaxation time: Strain relaxation time and Stress relaxation time.

Attenuation for given frequency is defined by Q-factor (Quality factor) which is equal to
sum of attenuations of all damping mechanisms for a given frequency.

To make it working properly, it is necessary to fine-tune N (here, 5) relaxation times so
that, for each frequency, Q-factor equals approximately to the defined one (as a
medium property).

Stress relaxation times only can be fitted using special procedures, and the remaining
ones then can be calculated using corresponding equations. Once tuned, those
relaxation times can be used for all other cases.

Then, the viscoelastic wave equation for 1 damping mechanism can be extended to the
case of N damping mechanisms case.

3.3 Summary

Tesseral software uses 2 methods to take into account the effect of seismic absorption:
1. The first method (Fp-attenuation)is to take into account amplitude attenuation

t
by using formula a(t):ao exp{—%] where @, is a signal peak frequency.

Implementing absorption in such way makes calculations very fast, but the
signal spectrum and its shape will not change and velocity dispersion is not
taken into account. This method is an approximation and it can be used as a fast
way to evaluate the absorption effect, especially for conventionally used in
seismic modeling signals which have narrow band of frequencies. See also
chapter Using Q-factor at Energy attenuation estimations.

2. The second method (visco-elastic) takes into account mechanics of seismic
absorption more accurately. It correctly calculates signal spectrum, amplitude,
velocity dispersion and signal time registrations. This approach can be used for
modeling the wave fields in complex geological conditions such as fracture
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zones. Because dry, water-saturated and oil-saturated fractures and layers have
different absorption properties, it is possible to investigate their influence on
the wave field.

A value of L (number of damping mechanisms) has been added as one of the
user input parameters in Tesseral package. It is recommended to use L=3. Time
step and spatial intervals are automatically calculated by the program using the
same algorithms as without absorption.
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4 Gassman’s model of porous medium
p =Dp; +(1_(p)

S

where O is the density of porous medium. Os is the density of fluid, 0O;is the density of

skeleton and @ is the porosity in percentage.

M L (1_R/ Ks)2 -
M=M=+ [O/K, +(1-D)/ K, —K/K?|

I\W, K,ﬁ is modules of planar deformation, omni-directional compression and shifting

in the dry rock. M,K,u is the modules of planar deformation, omni-directional

31+2u

compression and shifting in the fluid-saturated porous rock. K =—— s the module

3

of omni-directional compression in the fluid-saturated porous rock. KS is the module of omni-
directional compression of skeleton (rock mineral).

M=A1+ Zu;
K/ K, =(1+50®) ™ is the density of porous medium.
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Fig.1 Dependencies VP/VS on VP for rocks of different lithology
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Fig.2. Velocity VP, as function of water-saturation coefficient, for oil- and gas-saturated
sandstones (broken line) at depth of 600m, 1800m and 3000 m.

Vp=2700 m/s (gas), Vp=2900 m/s (water). Accordingly for such velocities:1/y =1,45 (gas),
1/v=2.0 (water). And corresnonding shear velocities: Vs=1860 m/s (gas). Vs=1450 m/s

5 3D AVO modeling procedure

Matrix method is the foundation for studying the 3D AVO functionality, which
calculates the tables of reflection and transmission coefficients of interferential packs
for stack of anisotropic layers with absorption, as well as their phase delays.

To characterize the reflection and refraction properties of a stack of anisotropic layers
with parallel plane boundaries, particle motion in each layer is described by a system of
6 differential equations:

ﬁ = joAf,
dz

where f = (U, U, Uy 735 7y 73)' -exp(jot— PyX, — P,X,)) is the plane wave.

Propagation matrix A depends on elasticity coefficients a; , density p and

slownesses p; and p,, which determine the direction of wave propagation.

At the transmission through layers’ boundaries, solution f remains continuous. If
medium consists of stack of layers with thicknesses h; ,..,hy and Ag,.. A¢ is the
propagation matrix for each layer, then the operator, which calculates the wavefield
from first boundary to the last one (propagator for a stack of layers), can be given as:

P=exp(joh,A,)-...exp(jwhA,).

I:)11 P12

Let’s denote P =( J where Pij -is the 3x3 matrix.

21 P22
Solving the system of equations Pf, =f, relatively to dissipated (outgoing from stack

of layers) waves, we obtain formula for the dissipation matrix:
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-1
S:_(Plz _Ej [Pll 0 j
P, O P, -E

Elements of matrix S are reflection and transmission coefficients of plane waves for all
types of waves for the stack of layers.

In the 3D AVO module, the coefficients of reflection and transmission of plane waves
from a stack of layers with horizontal boundaries are calculated by using the matrix of
Haskell-Thomson method. The program forms tables of reflection and transmission
coefficients depending on incidence angle and frequencies of seismic wave dissipating
on those boundaries. Then, the stored data are output in form of graphs.

To calculate the dissipation matrix for a stack of layers allocated between zero and
(n+1)™ half-spaces, firstly the propagator matrix H for this stack is defined, which relate
the amplitude of propagating waves from the first boundary to last one according to
the formula W, =HW,, where H=E_ P, ..P,E,, and P, =EAE" (propagator

of i layer).

The dissipation matrix S allows for calculating stack of amplitudes of six incoming waves
in amplitudes of outgoing six waves. For one boundary, dissipation matrix S consists
of reflection and transmission coefficients, and is defined according to the equation:

-1

h14 h15 hlG -1 0 0 h11 h12 h13 0 0 0
h24 hzs hze 0 -1 0 h21 h22 h23 0 0 0
S—_ h34 h35 hss 0 0 -1 h31 hsz h33 0 0 0
h44 h45 h46 0 0 0 h41 h42 h43 -1 0 0
h54 hss hss 0 0 0 h51 hsz h53 0 -1 0
h64 h65 hes 0 0 0 h61 hsz hea 0 0 -1

In the program, for the set range of incidence angles and frequencies, a dissipation
matrixes S are determined and then the amplitudes and phases of reflection and-
transmission coefficients are calculated for each boundary.

Propagator of each layer is calculated under the assumption that the medium could
have TTl-anisotropy with an arbitrary inclination of a symmetry axis. Inside this
medium, up to 3 fracturing systems can be added, which is characterized by the
intensities and inclination angles. All these parameters are converted into elasticity
coefficients. As a result, the medium generally becomes anisotropic without symmetry
(i.e. triclinic). Fracturing is taken into account by using formulas by Bakulin et al., (see
reference). Frequency-dependent absorption and velocity dispersion is taken into
account according to formulas by Aki & Richards (see reference). Propagator matrix for
an anisotropic layer is calculated on the basis of the equations given by Stroh (1962).
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