Planning 3D Survey in Tesseral Pro

www.tesseral-geo.com

Type of 3D survey design

- Orthogonal
- •Shot in crankshaft pattern
- •Diagonal

Editing with rotation

Moving Source and receiver lines in desired direction.

Recording patch design

Position survey design on topographic map

Load survey from SPS files

Survey design manipulation

Acquisition Geometry		×				
Type of 3D survey design 3D Su	urvey Layout Recording Patch Survey bearings					
Orthogonal						
 Shot in crankshaft pattern 	In our example let's define Orthogonal layout					
O Diagonal						
○ Load survey from SPS-files	Select SPS-files >					
	OK Cancel Apply He	lp				

Acquisition Geometry									
Type of 3D survey design 3D Survey Layout Recording Patch Survey bearings									
Sh	ots								
L	ine increment	500	m						
s	Station increment	600	m	Entering intervals between					
		,		sources and receivers on					
Re	ceivers			the grid					
L	ine increment.	300	m						
s	Station increment	250	m						
		ОК		Cancel Apply Help					

Cquisition Geometry										
	ORIGIN (0:0):	X beg.	2500	m	Y beg.	4000	m			
	INLINE:	Lenght	2500	m	Azimuth	0	deg			
	CROSSLINE:	Lenght	1600	m	Azimuth	+90	- deg			
			ок	Cance	el	Apply	Help			

The starting point and the length and azimuth of the grid location of sources and receivers. These parameters can be edited interactively

Using Topographic plan it is possible to overlay it with desired 3D Survey Planning Map, correct number, direction and distance between In-Lines and Cross-lines; edit positions of Shot and Receiver Stations.

Calculate Theoretical 3D Survey Fold for picked bin size .

Picked 3D shooting patch.