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An Initialization Method for Traveltime
Calculation in TTI Media
V. Roganov* (Ukrainian State Geological Prospecting Institute)

SUMMARY
In this paper, a fast method for computing both the group velocity and related slowness vector for a given
direction in an acoustic TTI medium is developed. This method is based on an iterative Newton/Raphson-
like procedure and can be used to initialize traveltime calculation and to determine the upwind stencil
direction. Numerical examples of qP-wave group velocity computation in TTI media with large
anellipticity illustrate the accuracy and efficiency of the proposed method.
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Introduction 
 
The initialization of a finite-difference scheme for traveltime calculation in an anisotropic 
medium contains the following three complications. First, wavefronts have a large curvature 
in the neighbourhood of the source (Qian et al. 2002). Therefore the spatial derivatives of 
traveltimes change rapidly near the source. So to solve this problem adaptive grid (Qian et al. 
2002), locally uniform mesh refinement (Kim and Cook 1999) or spherical coordinates 
(Dellinger et al. 1997) methods are used. Second, the vectors of phase and group velocities 
may have different directions in an anisotropic medium. These facts should be taken into 
account when computing upwind direction and stencil orientation in any finite-difference 
scheme (Wang et al 2006). Third, it is difficult, in general, to describe group velocity 
analytically as a function of its direction of propagation. Therefore, this velocity is usually 
determined as a function of the vector of phase velocity (Faria et al. 1994) or as a function of 
the Hamiltonian derivatives with respect to the components of the slowness-vector (Qian et al. 
2003). For weak anisotropic media, the group velocity as a function of its direction can be 
approximated by a few terms of the cosine Fourier transform. These formulae are often 
applied for TI-media (Faria et al. 1994, Kumar et al. 2004). For strong anisotropic media, 
Červený (2001) applied a method of anisotropic ray tracing to initialize traveltime 
calculations. Qian and Symes (2002) proposed a nonlinear iterative method to compute the 
group velocity and to initialize the traveltimes at grid points around the source. To simplify 
and speed up finite-difference traveltime computation in anisotropic media, acoustic TTI 
models with qS-wave velocities equal to zero along the symmetry axis are often applied (e.g. 
Alkhalifah, 1998; Zhang et al. 2002). 
  In this paper, a fast iterative method is developed for computing both the group 
velocity and the related slowness vector for a given direction in an acoustic TTI medium. It 
can be used to initialize the traveltime calculation in the neighbourhood of a source. It can 
also be used for defining extremes on a slowness surface. The coordinates of these extremes 
are then used to correctly determine the upwind stencil direction (Dellinger et al. 1997). 
 
 
Theory 
 
The equation of a qP slowness surface for an acoustic VTI medium can be obtained from the 
general eikonal equation for an arbitrary VTI medium by supposing the qS-wave velocity to 
equal zero along the symmetry axis: 
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where ε21+=a , δε −=d  and 321 ,, ppp  are the components of a slowness vector 

p ; δε ,  are Thomsen’s parameters; 
0pV  is the qP-wave velocity along the symmetry axis. In 

order to derive the slowness surface equation for a tilted acoustic TI medium with the 
symmetry axis 3u , let us pass to a new basis by the change of variables: pΡw = , where 

( )Twww 321 ,,=w ,  ( )Tppp 321 ,,=p  and the superscripted T denotes transposition. The 

matrix ( )321 ,, uuuΡ =  consists of the column vectors 

( )Tααϕαϕ sin;cossin;coscos1 −=u , ( )T0;cos;sin2 ϕϕ−=u  and 

( )Tααϕαϕ cos;sinsin;sincos3 =u . 

 Since Ρ  is orthogonal, pΡw T= , which is equivalent to the system of equations: 
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The slowness surface of the acoustic tilted TI medium can therefore be described with 
the formula: 

0=F ,       (3) 

where                          ( ) ( ) 2
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 Let the direction of group velocity be described by the vector ( ) .,, 321
T

g nnn=n  In 

the coordinate system ( )Twww 321 ,,=w , this vector has coordinates g
T

g nΡm = , and the 
symmetry axis of the TI medium is vertical. 

In order to reduce the problem to a two-dimensional one, turn the vector 
( )gggg mmm 321 ,,=m  around of the axis 3w  so that its coordinates become equal to 

( )gggg mmm 3
2
2

2
1 ;0;+=l . In case of 03 <gm  it is also necessary to find the symmetrical 

analogue of this vector with respect to the plane 03 =w . 

 Let us find the coordinates of the related slowness vector ( )31 ;0; wws =l . Its 

coordinates satisfy simultaneously equation (3) with 02 =w  and the condition of collinearity 
for the vectors gl  and ( )

31
;0; wwg FF ′′=f . The last condition can formally be written as 

0=G , where 

 2
1

2
13 31 ggwgw mmFmFG +′−′= .    (4) 

 
 The values of w1 and w2 are found by solving the system of equations (3) and (4) with 
a Newton/Raphson-like iterative procedure. 
 To obtain an initial approach to the slowness vector sl  we substitute in equation (3) 

iww βcos1 = , 02 =w  and iww βsin3 =  with different angles iβ , distributed between 0 
and 900 in 50 increments. Then equation (3) is solved for all the above angles to obtain w . 
After that the slowness vectors ( )31 ;0; wwi =w  and the vectors ( )

31
;0; wwi FF ′′=f  are 

calculated. The vector if  is collinear to the related vector of group velocity. Afterwards, 
among if , vector jf is found that has the minimal angular deviation from gl . In the first step 

of the approximation process, the slowness vector sl is supposed to satisfy the equation 

js wl =0, . 

 To compute the slowness vector sl  related to the group velocity vector gl , the 
following iterative process is utilized: 

 nnsns vΑll 1
,1,

−
+ −= ,        

where ( )Tn GF ,=v . The functions F and G  are calculated with nww ,11 = , 02 =w , and 

nww ,33 = . The matrix Α  consists of elements  
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 With the slowness vector sl  obtained, the group velocity along the direction gl  can 

be estimated using equality ( ) 1−⋅= sggv ll .  
 Let us illustrate the iterative initializing scheme on two acoustic VTI media with 
strong positive and negative anellipticities.  

In the first example (Figure 1a), conceder a VTI medium with smVp 3000
0
= , 

3.0=ε , 45.0−=δ , and find the angle of the slowness vector sl , the values of the group 

and phase velocities at the angle of energy propagation 071=gϕ . 

As result of each step of calculation, approximate values of the slowness vector sil  
and group velocity gv  are obtained. The relative errors ia  of the first three steps of 

approximation of group velocity are %21.0%,58.4 21 == aa , and %001.03 =a . After 

the third step of calculation, the angle of slowness vector is 08,41=fϕ . This angle differs 

considerably from the angle of energy propagation 071=gϕ . The estimated values of the 

group and phase velocities are: smvg /3090=  and smv f /2698= , respectively. 

In the second example (Figure 1b), conceder a VTI medium with smVp /3000
0
= , 

3.0−=ε , 45.0=δ , and the angle of energy propagation 043=gϕ  and perform the same 
iterative operations. In this case the first three relative errors of group velocity estimates are 

%58.0%,62.5 21 == aa , and %007.03 =a . The angle of the slowness vector is 
08.83=fϕ . The estimated values of group and phase velocities are smvg /2646=  and 

smv f /2004= , respectively. 
In Figure 2a and Figure 2b, the traveltimes in the neighbourhood of the source for 

both examples are displayed. These traveltimes were calculated using the group velocities 
obtained by the application of the above algorithm. 

 

 

 
 

 
 

Figure 1. Slowness curves for acoustic VTI media with qP velocity along the vertical axis 
smVp 3000

0
=  and large positive and negative value of the anellipticity parameters.  

(a) 3.0=ε  and 45.0−=δ ; (b) 3.0−=ε  and 45.0=δ . 
 
 
 
 
 
 



 

 

 
 

Figure 2. Traveltimes for homogeneous VTI media with large (a) positive and (b) negative 
anellipticity parameters. qP velocity and Thomsen’s parameters are the same as in Figure 1. 
 
 
Conclusions 
 
A fast iterative algorithm for calculating the group velocity and related slowness vector for a 
given energy propagation direction in an anisitropic TTI medium is obtained. This algorithm 
can be used to initialize any finite-difference scheme for traveltime computation. Also, it can 
be used to correctly determine upwind stencil direction in upwind finite-difference scheme 
applied to TTI medium.  
 The algorithm is robust, converges rapidly and requires only 2-3 steps to obtain group 
velocity and traveltime estimates with sufficient accuracy. 
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