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Summary 
The media with an orthorhombic symmetry typically have a finite number of directions in which 

the velocities of two quasi-shear waves are the same. From now on, the directions are referred to as 
singular. 
  For such class of media, the sheets of quasi-shear wave velocitiy surface in the neighbourhood of 
the singular directions intersect on a conic surface. The shear wave polarization vectors turn about when 
rounding singular direction. 
 
Introduction 
  Shoenberg M. and Helbig K. (1997) have given an estimation of the number of possible singular 
directions and have determined their positions in space for the orthorhombic media. They also have noted 
that the singular directions are characterized by fast changes of both the polarization vector and the shear 
wave velocity with respect to changes in the direction of wave propagation. 
  The given paper is devoted to studying the structure of the quasi-shear wave velocity surface being 
formed by the function VS(α,φ) with  α being the phase angle  with vertical axis and φ being an azimuth. 
Furthermore, the directions of polarization vectors in the neighbourhood of a singular direction are also 
investigated. 
  Let us choose a system of coordinates so that the planes of an orthorhombic symmetry coincide 
with coordinate planes [x1, x2], [x1, x3],and [x2, x3]. Then we denote the density-normalized stiffness in this 
system of coordinates as cij. 
  According to the results by Shoenberg M. and Helbig K., the singular directions can be divided on 
3 categories.  
1. A wave propagates along one of the coordinate axes x1, x2, x3. This is the case when one of the following 
equalities is met: c55=c66, c44=c66, or c44=c55. We shall not discuss these cases further. 
2. A wave propagates along one of the coordinate planes. In this case, the angle 0α  can be determined by 
solving a square equation in the unknown )(tan 0

2 α . For example, in the plane [x1, x3], such equation is 
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3. The direction of wave propagation is off any coordinate plane. In this case, for finding (α0, φ0) it is 
necessary to solve the linear system of three equations in the unknowns 2
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and then to find the angles using the formulas 
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In this paper, we consider the case when the above equations have different roots in the unknowns α0 and 
φ0. The case of repeated roots was investigated by Crampin S. and Yedlin M. (1981). 
  The squared phase velocities 2V are eigenvalues, and polarization vectors )( ip=p  are 
eigenvectors of the symmetric matrix ( ) ( )ijg=ϕα ,G  with the following elements: 
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where 
       ααϕαϕ cos,sinsin,sincos 321 === nnn  
 are the components of a directing vector ( )jn=n . 

 Let ( )00
2 ,ϕαSV  and ( )00

2 ,ϕαPV  be eigenvalues of a matrix ),( 00 ϕαG , first of which is double. 
Assume that { }321 pppP =  is a basis formed by the related normalized eigenvectors. 
 Thus, the study of both ( )ϕα ,2

SV  and ( )ϕα,ip  )2,1( =i  in the neighbourhood of a singular 
direction can be reduced to the process of estimating the perturbated eigenvalues and eigenvectors of the 
symmetric matrix ),( 00 ϕαG , having the double eigenvalue. 

Method 
 Consider a perturbation of the matrix ),( 00 ϕαG  in the basis P. Let us designate the matrix of 
transforming to this basis as ( )321 ,, pppS = . If ααα d+= 0  and ϕϕϕ d+= 0 , then 
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In (4), the matrix ( )ijL=L  has elements that are linear forms of the variables αd and ϕd : 
 

          S
GG

SL 







∂
∂

+
∂
∂

= ϕ
ϕ

α
α

ddT .  

 
The particular derivatives of the matrix G are taken for each element at the point ( )00 ,ϕα . 

 Let us define as  
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 the left top 2х2-minor of the matrix L. 



3 

EAGE 64th Conference & Exhibition — Florence, Italy, 27 - 30 May 2002 

   According to the theory of perturbation of double eigenvalues of matrixes (Lankaster, 1969), with 
the accuracy of ( )ϕα ddo , , we can find the eigenvalues and eigenvectors of the matrix ),( ϕαG  in the basis 
P from the equations 
 
                  ( ) ( ) λϕαϕα += 00

22 ,, SS VV  
 and  
              ( ) [ ]TS LL 0, 1112 −= λϕαp  
where 
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Let us define as ψ  the angle that satisfies 
2211

122
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=ψ , and find the angle Sψ  between the 

vectors ( )ϕα,Sp  and [ ]T001 .  
 Since 
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For a typical medium with an orthorhombic symmetry the forms 2211 LL −  and 12L  are not 

proportional. In this case, the vector [ ]Tdd ϕα=v  can be presented as Avw = , where A is a linear non-
singular mapping. Therefore, the vector [ ]TLLL 122211 2−=w  turns on 3600, when the vector v rotates 
over an ellipse. At the same time, the vector ( )ϕα,Sp  turns on 1800, running over a circle. 

Taking into account (5), we find that  
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is true with accuracy of ( )ϕα ddo , . 
 
              The linear part of the perturbation 
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is identical for both shear waves. The term  
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defines a conic elliptic surface and its different signs correspond to different sheets of velocity surface. 

Consider in more detail the case of the location of a singular direction in the plane [x1, x3]. Then 
00 =ϕ  and the angle 0α  can be obtained using (1). Matrixes ),( 00 ϕαG  and 
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have respectively the forms: 
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The element g22 is the double eigenvalue of the matrix ),( 00 ϕαG . Therefor 
 
                         ( )( ) 2

1322332211 ggggg =−− . 
 

 The values of ijg  are defined from (3), in which 
  

03201 cos,0,sin αα === nnn ,   
 

 and the values of ijh  are defined as: 
 

     ( ) 0551111 2sin αcch −=  
     ( ) 0

2
661212 sin αcch += ,  

     ( ) 0551313 2cos αcch += , 
    ( ) 0446622 2sin αcch −= ,  
    ( ) 00442323 cossin ααcch += , 
    ( ) 0335533 2sin αcch −= . 
 
  Let us designate 
 

2233110 2gggr −+= , ( ) ( ) 13133322111122331 2 hghgghggr −−+−= ,  

( ) ( ) 231213
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  Then the normalized eigenvectors of the matrix ),( 00 ϕαG  can be found with the formulas  
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where  
                    ( ) 02211

2 rggr −= . 
 
  With the help of algebraic transformations, we can obtain 
 

αd
r
rL T

0

1
1111 == Hpp ,  

( ) 2

0

22
21

2
12 ϕd

r
r

L T == Hpp ,  

αdhL T
222222 == Hpp . 

 
  Therefore, 



5 

EAGE 64th Conference & Exhibition — Florence, Italy, 27 - 30 May 2002 

 
( ) ( )

( ) 












+








−±








+

+=

2

0

22
2

22
0

1
22

0

1

00

00

4
,4

1

,,

ϕαα
ϕα

ϕαϕα

d
r
rdh

r
rdh

r
r

V

VV

S

SS

                   (7) 

and 
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 Taking into account that 
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where θ  is the angle between the direction of propagation of a wave in relation to the singular direction 

),( 00 ϕα , and choosing a positive sign in (8), yield 
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with    
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 Two sheets of the quasi-shear wave velocity surface in the 010±  neighbourhood of the singularity 
direction of 0

0
0

0 0and,8.59 == ϕα  for an orthorhombic medium with 911 =c , 6.312 =c , 25.213 =c , 
84.922 =c , 4.223 =c , 9375.533 =c , 244 =c , 6.155 =c , 182.266 =c  are shown in Fig. 1. These parameters are 

used by many authors as a standard model. In the same figure, the cylindrical surface calculated using 
formula (7) is shown. 
 The polarization vectors of the two quasi-shear waves in the same neighbourhood are demonstrated 
in Figs. 2 and 3. Those vectors have been expanded into the eigenvectors of the matrix ),( 00 ϕαG . They 
turn about when the direction of wave propagation rounds the singularity. 
 
Conclusion 

1. The formulas for calculating the phase velocities of quasi-shear waves in the neighbourhood of a 
singular direction are derived. 

2  Analysis of the formulas allow us to draw the following conclusion: It is impossible to choose 
directions of the polarization vector such that they be continuous every where on a closed curve containing 
a singularity. 
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Figure.1. Intersection of the sheets of shear wave velocitiy 
surface and their approximation by a cylindrical surface 
 

 

 
Figure 2   Disposition of the polarization vectors of the 
waves qS2 in the neighbourhood  of the singular direction 

 

 
Figure 3   Disposition of the polarization vectors of the 
waves qS1 in the neighbourhood  of a singular direction 

 


