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SUMMARY
A method for numerical modelling of three-component (3C) three-dimensional (3D) wavefields in
horizontally layered attenuative medium is derived. The method is based on delta-operators, six-
dimensional Stroh formalism and Haskell-Thomson matrix method.  The earth model consists of several
multi-fractured layers, each of which represented by anisotropic medium model with attenuation. The
attenuative fractured medium model is described by Schoenberg's linear slip formalism developed further
more by introduction of the complex-valued weaknesses in the stiffness matrix. The numerical modelling
method is validated for simplified earth model, which is attenuative HTI medium due to single fracture set.
The Q-anisotropy and velocity anisotropy revealed from simulated wavefiedls fairly match theory-
predicted quantities.
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Introduction 

In this paper we propose a method for calculating seismograms for horizontally layered fractured medium with 

account for wave attenuation. Unlike the usual case of attenuative isotropic medium where Q-factor is a 

constant, we deal with the case of anisotropy of attenuation resulting in the variation of the signal waveform and 

spectral composition as a function of azimuth.  

Method for the wave field modeling for a fractured medium with attenuation is based on the generation 

of the propagator matrix for a layered sequence using the six-dimensional formalism of Stroh (1962). To 

eliminate the instability associated with the calculation of the minors of the ill-conditioned matrices, the ∆-

operator technique is used, adapted to the six-dimensional matrices (Roganov et al., 2009). The wave field is 

modeled by summation of the reflected or refracted plane waves by their horizontal slownesses and frequencies. 

 Fractured medium is described by the linear slip model developed by M. Schonberg and his colleagues 

(Schoenberg and Douma, 1988; Hood and Schoenberg, 1989; Schoenberg and Muir, 1989; Schoenberg and 

Sayers, 1995). To take into account wave attenuation caused by the friction between rough crack surfaces as 

well as viscous fluid flow in the cracks, Chichinina et al. (2004) develop the theory of attenuative linear slip 

model by introducing complex-valued weaknesses ∆N and ∆T. Introduction of the complex parameters ∆N and ∆T 

leads to the emergence of the phenomenon of Q-anisotropy (or anisotropy of attenuation). The properties of the 

anisotropic Q-factor are studied in detail by Chichinina et al. (2006, 2009). The authors of this paper show that 

the presence of Q-anisotropy provides additional information on the fracture orientation and fluid saturation. 

Chichinina et al. (2009) present the results of physical modeling of wave fields in an ultrasonic experiment and 

obtain the estimates of Q-factor and velocity values. The authors compare these data to the theoretical results. 

General properties of Q-anisotropy and Thomson style parameters for TI and orthorhombic media are presented 

by Zhu and Tsvankin (2006, 2007). 

 Taking into account the prospects of further development of this topic and its application for solving 

inverse problems using real data, there is a need for development of numerical wavefield simulation based on 

the linear slip model with attenuation. In this paper, the Haskell-Thomson method (Thomson, 1950; Haskell, 

1953) of wavefield modeling has been generalized for the linear slip model with attenuation. This method is 

used for simulation of qP-wavefield with the model-input parameters estimated by Chichinina et al. (2009) from 

physical  modeling. From the simulated wavefield data, the qP-wave attenuation is estimated as a function of 

wave propagation angle, using spectral ratio method. The group velocities are determined using travel times. 

Comparison of the obtained relationships to the theoretical ones illustrates the correctness of the wavefield 

modeling. 

Theory 

Wavefield generation for a stack of anisotropic layers using the Haskell-Thomson method and ∆-operator 

technique is described in detail by Roganov et al. (2009). In this way we will only introduce the necessary 

denotations and give more detailed description of the generation of elasticity matrices for the attenuative linear 

slip model (Schoenberg and Muir, 1989, Chichinina et al., 2006). 

Let’s consider a medium consisting of n plane horizontal layers with the thicknesses hi (i=1,…,n) bounded by 

two half-spaces (the upper, i=0, and the lower, i=n+1). Let’s assume that these layers have welded contacts and 

contain several systems of fractures. According to the Haskell-Thomson method, the wavefields of velocities of 

displacement and stress ( )
1zf  and ( )

1+n
zf  at the interfaces between the half-spaces are given by the equation 

( ) ( )1 1nz z+ =f Ρf , where }exp{}...exp{ )1(

1

)( MMΡ hjhj
n

n
ωω=  is the six-dimensional propagator matrix for the 

sequence of layers, and ( )iM are the fundamental matrices of the layers, 1j = − . The amplitude propagator H 

and the scattering matrix K=(kij)ij=1,6, are derived from the matrix P. The matrix K includes the transmission and 

reflection coefficients of all the types of upgoing and downgoing waves, and these coefficients can be obtained 

from the following formulas:  
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The delta operator technique is applied to improve the stability of calculation of the minors in the 

formula (1) (Dunkin 1965; Roganov et al., 2009).  

The fields of reflected or transmitted waves related to the type β and excited by the source of type α are 

generated due to summation by horizontal slownesses 
1

s , 
2

s  and circular frequency ω  according to the 

formula: 



                                                                                                               
                                                                                                                  

73
rd

 EAGE Conference & Exhibition incorporating SPE EUROPEC 2011 

Vienna, Austria, 23-26 May 2011 

( ) ( ) ( ) ( )[ ] polppp

ss

ppp tzsysxsj
s

kssBA
tzyx au −++= ∑ β

ω α

αβα
β ω

ωω
321

,, 3

21
exp

,
,,,

21

,  (2) 

where αβk  is the reflection or transmission coefficient from the scattering matrix; α3
s  is the vertical slowness 

of the wave of type α; ( )ωA  is the amplitude characteristic of the signal; ( )
21

, ssBα
 is the characteristic of the 

directivity of the source of type α as a function of horizontal slownesses; 
pola  is the polarization vector of the 

wave of type β at the receiver location. 

Within the scope of the linear slip theory (Schoenberg and Douma, 1988) the effective compliance 

matrix S  of a layer containing several systems of fractures characterized with the compliances 
fi

S  and located 

in the medium with the compliance 
bS  is given by the formula b fi

i

= +∑S S S . 

Let’s assume that the background medium is isotropic, and the fracture systems are rotationally 

invariant and given by the weaknesses ∆Ni and ∆Ti and the normals 
in . In this case 

( )diag 0,0, , ,T

fi i Ni Ti Ti ik k k=S N N , where ( )
1 1

331Ni Ni Nik c
− −= ∆ − ∆ , ( )

1 1

551Ti Ti Tik c
− −= ∆ − ∆ , and 

iN are the Bond’s 

matrices (Winterstein, 1990) describing the transformation of the compliance matrices at the rotation of the 

coordinate system converting the 
3X -axis into the vector 

in . The presence of a single fracture system 

orthogonal to the 
1X -axis in the isotropic background with Lame's constants λ , µ  leads to a HTI medium with 

the elasticity matrix ( ) ( )( )diag , 1 , 1T Tµ µ µ= ⊕ − ∆ − ∆C G , where ( )ijg=G , 
ij jig g=  ( )11 1 Ng π= − ∆ , 

( )12 13 1 Ng g λ= = − ∆ , ( )2

22 33 1 Ng g rπ= = − ∆ , ( )23 1 Ng rλ= − ∆ , 2π λ µ= + , /r λ π=  (Schoenberg and Sayers, 

1995). 

The parameters R I

N N Ni∆ = ∆ + ⋅ ∆  and R I

T T Ti∆ = ∆ + ⋅ ∆  are complex values in presence of attenuation. 

That’s why the elasticity matrix C  is also complex. And even small imaginary parts I

N∆ and I

T∆  can result in 

strong attenuation anisotropy (Chichinina, 2006). We will demonstrate this point with the aid of an example 

given below.  

In the analysis of the synthetic data, we use exact dependence of the group velocity and Q-factor from 

the group angle α  to the axis 1X  for HTI medium with the stiffness matrix ( )ijc=C . The expressions for group 

velocity and Q-factor are given below. Let’s denote ( )11 1 /Nc π ρ= − ∆ , ( )13 1 /Nc λ ρ= − ∆ , ( )2

33 1 /Nc rπ ρ= − ∆ , 

( )55 1 /Nc µ ρ= − ∆ . We can obtain a relationship for phase phV  and group gV  velocities of qP-wave using the 

method from the article of Schoenberg and Daley (2003) with slightly corrected designations:  
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cos2u ϕ= , ϕ  is the phase angle from the 
1X  axis in vertical plane. Let’s assume that 

1 sin 2 /uf f fϕ′= . The 

equations (5), (6) from the article of Schoenberg and Daley (2003) imply the following equations: 

( ) 1Retg fϕ α− = ,      (4) 

 2

11g phV V f= + ,      (5)  

2 2Im / Reph phQ V V= .      (6) 

In this formulas α  is the group angle, and Q is the quality factor. For comparison we will also use the formula 

(8) from the article of Chichinina et al. (2009). The formula relates Q factor and the phase angle ϕ  in the 

following way: 
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Numerical example 

 
The method described above is applied for calculation of two seismograms containing radial (R) component of 

the direct qP-wave propagating in attenuative HTI medium due to single fracture set normal to X-axis (Fig.1). 

The model-input parameters are given in Table 1, where VP0, VS0 and ρ are P- and S- wave velocities and density 

of the background material (Plexiglas). These parameters were estimated by Chichinina et al. (2009) in the 

laboratory ultrasonic experiment (the case of the model “Dry fractures” with the loading pressure of 4 MPa). 
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Table 1 

VP0 (m/s) VS0 (m/s) ρ (kg/m
3
) 

R

N∆  I

N∆  R

T
∆  I

T∆  

2800 1300 1200 0.60 0.054 0.53 0.004 

  

The receivers are located along the two lines: the horizontal and the vertical ones (Fig.1). The lines are located 

at the distance of 1 km from the source and cover the offsets from 0 to 3 km.  

 The formula (5) is used to calculate the dependence of group angle α  from the phase angle ϕ  for the qP-

wave velocity (Fig.2). The angles α  significantly differ from the angles ϕ  thus testifying to the large velocity 

anisotropy ( %35%100]/)[( ≈⋅− VVV MINMAX
). 

 Figure 3 shows the gathers for horizontal (a, b) and vertical (c, d) lines of receivers. The gathers on the 

left (a, c) are calculated with account for attenuation (the attenuation parameters I

N∆  and I

T∆ are given in Table 

1), while the gathers on the right ((b, d) are calculated without account for attenuation ( 0
I

N∆ = , 0
I

T∆ = ). 

 Q-factor is estimated for each receiver-point signature using the spectral ratio method. (Figure 4(a)). The 

group velocity Vg is estimated from the traveltimes of the direct qP-wave (Figure 4(b)). The estimated values of 

Q and Vg (marked by blue and green symbols) are overlain on the theoretical curves calculated from the 

formulas (6) and (5) correspondingly (marked by black line). For comparison, the same Figure 4 also contains 

theory-predicted dependences of Q-factor from the phase angle ϕ  (formula (7)) and the phase velocity from the 

phase angle (denoted by red line).  

 Figure 4(a) shows strong attenuation anisotropy %145%100]/)[( ≈⋅− QQQ MINMAX
, which is more than 

100% greater than the magnitude of velocity anisotropy. It is quite natural result, as theoretically predicted and 

confirmed by measurements of Q-anisotropy by physical modeling (Zhu et al. 2007, Chichinina et al. 2009),   

 The results demonstrate that attenuation and velocity estimated from simulated wavefiedls fairly match 

the theory-predicted values. Therefore, this method of wavefield modeling developed for attenuative fractured 

medium is correct and can be applied for solving different problems in presence of Q-anisotropy. 

 

Conclusions 

 

Thus, the efficient wavefield-modeling method for attenuative fractured medium has been developed and 

demonstrated on a simple model example with successful results. 
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Figure 1. Acquisition geometry. The receivers are 

located along the horizontal and vertical lines. 

Fractures are perpendicular to the X-axis. 

Figure 2. Dependence of the group angle from the 

phase angle for qP-wave velocity (black line) is not  

a linear function (the latter marked by red line). 

 

 
Figure 3. Gathers for horizontal (a, b) and vertical (c, d) lines of receivers. Left images (a,c) are obtained with 

attenuation (see I

N∆  and I

T∆ in Table 1), and right images (b,d) are obtained without attenuation ( 0I

N∆ = and 

0I

T∆ = ). 

 

 

 
                                 (a)                                                                                                     (b) 

Figure 4. The values of  Q
-1

 (a) and group velocities (b) for qP-wave. The values were derived from the spectra 

and traveltimes correspondingly. The blue circles denote receivers located along the vertical line and green 

squares denote receivers located along the horizontal line. The black curves represent theoretical functions, 

while the red curves represent weak anisotropy approximations.  


