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Abstract

An approximate scattering matrix for an interface separating two arbitrary anisotropic half-spaces is
obtained. The matrix depends on perturbation of elastic coefficients, densities, and directions of wave
propagation. Compact linearized formulas for the reflection/transmission coefficients are derived for a weak-
contrast interface and an anisotropic background. In case of an isotropic background the PP
reflection/transmission coefficients are reduced to simple analytic equations expressed in terms of independent
linear combinations of perturbations of normalized elastic coefficients and densities, which can be determined
from observed data.

Introduction

Approximate formulas for the reflection/transmission (R/T) coefficients are widely used to invert seismic
data into the physical properties of a media, especially in amplitude-versus-offset (AVO) analysis and amplitude-
versus-azimuth (AVA) analysis, and to study the behavior of these coefficients in the neighborhood of a given
direction.

Linearized formulas of the PP reflection/transmission coefficients for an arbitrarily weak-anisotropic
perturbation of an isotropic medium were derived by Vavrycuk and Psencyk (1998), Psencyk and Vavrycuk
(1998), Zillmer (1998). Klimes (2003) obtained approximate equations of the scattering matrix of an arbitrary
oriented weak-contrast interface. Formulas of the PP reflection/transmission coefficients for a strong-contrast
interface separating two weakly anisotropic half-spaces where derived by Zillmer (1997).

Theory
Following these studies, let us consider a medium with two anisotropic half-spaces separated by plane

x, =0 and denote the densities and the elastic parameters at the both half-spaces as p ’ and 19  i=1,2,

mp,nq
respectively.

Plane elastic waves in the half-spaces i=1, 2 with a common frequency ® and an identical projection of a

slowness vectors s! = (s ;sz;sgfl)) onto the plane x, =0 are the sum of the waves with different modes o and

can be expressed in the following way:
u®(r,)=>"6aY exp{jools - r 1)}, )

(i)

a

where a'” is a unit polarization vector, 5" is a scalar amplitude. The subscript & denotes a type of waves: a=1,

2, 3 correspond to the down-going qP, S1, S2 waves, while a=4, 5, 6 correspond to up-going qP, S1, S2 waves,
respectively.
Let C|, denote a 3x3 matrix whose elements are the elastic parameters: C\,)[p,q]=A4{, , . An a-type

mn
wave presses per unit area of the interface x, = 0 with the force f\” = —j@1"”, where
0 _ 0 D) 4 (e ) a0
19 = —(5,C9 +5,CQ +s0CY)a?. @)
Let v and n!” denote 6-dimensional column and row vectors respectively, determined in the following
) a® ) . .
way: v = l“ , n® :(IZ)T; a(a’)T), where 7T stands for transposition.

a (,) a
o

In each of the half-spaces i=1,2 let {afj), p(i)} are the eigenpairs of symmetrical Christoffel matrixes
G = >'s5,5,C+ > s s (C(]g +Cy) )+ (s§2 )2C(3"3>, which depend on the wave type, o :
p.q=1,2 p=1,2

G(i)a(f) =p(f) a(i) ) (3)

a a a
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Let C!), i=1,2, be nonsingular. This is usually the case since these matrixes possess relatively great

elements 4 {75, 49),;, 1§, on their principal diagonals and relatively small ones elsewhere.

Equation (2) can be expressed as

CY(5,CY + 5,00 ) al + €Y = —sal )
Substituting (2) and (4) in (3) yields:
DEO1ED _ 0 )a® 4 0 o 6) ) O -1y _ _ (y (D)
zspsq(cpsc33 G, _Cpq)aa tpoa, +(51C13 +5,C5 )Css 1, ==s3,1, . (5)

p.q=12
Jointly, equations (4) and (5) demonstrate that the vectors v\ and n” are the right and left eigenvectors
of 6x6 matrix

M® :_(Am C(sl;]] 6)
B® AOT
associated with their eigenvalues, s{), i.e.
MOy = sy and nOM® =5n®, (7)
where A® =CQ7(s,C8) +5,€0), BO = Y55, (COCUCO - )+ p 1.
P.q=12

()

3a

Unlike the Christoffel matrixes G, the matrixes M do not contain the component 5! of the slowness

vector ' . For this reason, they are referred not to a concrete wave mode, but to wave packets as a whole.

Let E be a matrix consisting of the column eigenvectors v of the matrix M. From (7) it follows that the

. . A )1 . . .
inverse matrix (E( )) consists of the following row eigenvectors:
) 0)
0 _ ng _ n,
“ TR0 0 07 40
Let X:(v}l) W vy VS)) and Y:(ng) wWovd v WY VS)) be the matrixes consisting of the

column eigenvectors of matrixes M, i=1,2, for all the types of plane waves coming to and leaving the
interface, respectively, and S be the elastic scattering matrix containing all the R/T coefficients.

If Y is nonsingular, its columns form a basis in a 6-dimensional vector space. In this case the scattering
matrix S can be found as S = Y "X (Aki and Richards, 1980). The calculation of S is thus reduced to calculation
of the eigenvectors of the matrixes M.

If the matrix M® undergoes a perturbation, AM", caused by deviations of the elastic coefficients
o)

a

A0 C(’f;, the components s, and s, of slowness vectors s, , and densities p(i), the scattering matrix S

mp,nq

obtains the following perturbation

AS=Y"-AX-Y ' AY-S. (8)
The matrixes X and Y can be expressed as follows:
C(EVOEPY L (BDED o [ OED o
RV gR® | |E® EO ) where gD RO
21 22 21 22 21 22

is splitting the matrix E into the four 3x3-submatrixes Effq 34, p, =1,2).

According to the perturbation theory, if the matrix M ) has eigenvalues sg’; of index 1, the first-order

perturbation of the eigenvalues & sg’[f and eigenvectors OV g) of this matrix can be calculated as:

D) — O AN D )
053, =W,/ AM"'v 7, (10)
) _ () () )y
SV =dv + > dlvD (11)
q#p
w(i)AM(i)V(i)
where dy :qm—mp, when p#q and  sy)=s)), (12)
s —s3)
dy) =0, when p#q and sy)=s{,
G _ <i>< r <f))
d, = qup a, -a) ). (13)
P#q

Note, equation (13) follows from the condition of normalization: |a(p” +6 a;i)| =1.
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If the matrix M has a multiple eigenvalue, s, the associated eigenvectors, v(: v}j , should be

selected to satisfy the equations W(;) AMv Z) =0, with m=n.

Let AG) denote a deviation of the matrix

G = Z(Sm c¥ +sPs, CO)

3p m 3m
m=1,2 m,n=1,2

)+ T COs,s, + CUsDsD — pl, (14)

mn*~m"“n

that emerges due to some changes in the elastic coefficients, the components s, and s, of the slowness vector,

and the densities p, with the values s\) and s\ being invariable. Substituting 1" =-C{) (A” +5{))a"" and

BY =ACHAY — 3 CYs, s, +pl inthe expression n()AMv") yields
m,n=1,2
) i) _ qOT RGO O
n, AMv a AGa, . (15)
a"G7a? =27 G () 07 5 () O _ g0 pOy0) i
From the formula G, a, qu . +(s s3q)lq a,’ =0.5(s3, ,m, v, with p#gq
and s{)#s{ one can obtain
2" AG" ¥
g0 2 AGja; (15)
qpr 2a(1)TG(l) i) °
qp 9

The similar equation, in the tensor notation, was recently obtained by Klimes (2003).

Let us introduce a matrix D = (d (’)) and split it into four 3x3-submatrixes DE{’; , p,q=1,2. Then equation

(11) can be rewritten in a compact form:
AE" =E¥ . D", (16)
Using (8), (9), and (16), the following equations for the perturbations of the matrixes X, Y and S can be

obtained:
D/ 0 0 DY 0 DY DY 0
AX:X( N (2)j+Y[ Gl oAay=x| 0 TRy
0 Dy Dy 0 Dy 0 0 DY

as=| O PR [P0 0 DI 0 G [ 0 D) (a7
D)/ 0 0 DY 0 DY Dy 0

In a particular case of half-spaces with similar physical properties, the medium can be considered as
perturbation of the homogeneous background. Since S for homogeneous media is an identity matrix, expression
(17) for a weak-contrast interface becomes much simpler:

1 2 ( )
AS:[ D{I) _Dll) _Dlz) +Dj; J (18)
(1) (2) (1) (2)
_D21 +D21 Dzz _Dzz

Equation (18) demonstrates how a perturbation of the scattering matrix for a weak-contrast interface
depends on differences in the elasticity and density of the half-spaces and a perturbation of the slowness.

The dependence of the PP reflection/transmission coefficients and qP-wave phase velocities squared on a
perturbation of a homogeneous isotropic background can be written as:

fi foon
kR(nl,n2)=4—;32—?2+?3233, (19)
1 1 2n? — n2(2n? =3
ky(n,,n,) = 1+Z(2+—2]f4 3 f2 3( 3 )233 +2n,fy; (20)
n 4
Vp(mom) = a {1+ f,+ 2021, +n§a33 wan(f+ 1), 1)

_ 2 _ 2 2 _ _ 2 2
where a; =Ac; (pa®), ny(n,n,)=l—n; —ny , fi=axn +ayn,, f,=zsn +2z,mn, +z,n;,
_ 3 2 2 3 _ 4 3 2 2 3 4
Sy =zany +zsgniny + zumin, + 20y, fy=ayn, +4agnin, +2znin, +4ann, +ayn,,

Ty =Qyutly, Zy =204 —EAy +1, zg=2a5 a5+, Zg =206 T A1y, Zus = 2045 —E yg, 2y = dyy — Ay

2
Zyy =5 — G5y Zsg = 2056 — Uy + Oy s Zyg = 2046 — a5 T ys r_(4’82 _1JAP > h = %ﬂ and ¢=1 for reflected
a P P
Ap 2Ap _ . _ _ _ S
waves, r=——, j, =— and ¢=-1 for transmitted waves, » =0, , =0 and &=-1 for phase velocities;
P P
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a and f are P-and S-wave velocities, p - is the density of a referent isotropic medium, Ac are deviations of
the elastic coefficients, n = (nl, ny, n3) is a unit direction vector.

In expressions (19) - (21), the factors at a;, and z, are linearly independent functions. For this reason, the

parameters a; and z, from the above equations can be determined uniquely using a sufficiently large number of

reflection/transmission coefficients and phase velocities. Analysis this equations allows us to draw a conclusion
that only the elastic parameters and their linear combinations from Table 1 can be determined independently and
uniquely.

Table 1: Elastic parameters recoverable from observed variables ky(n,,n,), k,(n,,n,), V:P (ny,n,)

kgs ki, Vjp ap ay a3 1 a6 273
kg 204 — Ay +7 2a5s —a;; +r 20,5 — Ay 2a4 +a,,
k, V;P 2a,4, +ay +r 2a +a;; +r1 2a,5 + ay 2a. + ay,
2a,5 — ays + ays 2as6 —asy +ay, Ay — Ay ays —Ass
v:P Az ass

Equations (19)-(21) for various directions n; represent an overdetermined system of linear equations in
the unknowns from Table 1. Let Fx =b be a matrix representation of the above system of equations.
In Figure 1, the eigenvalues of the matrix (FTF)I/2 are displayed for various combinations of equations

(19)-(21). The eigenvalues were normalized and arranged in a non-ascending order. The directions n; uniformly
covered an incidence interval 0 <@ < /4 and an azimuth interval 0 < ¢ <27z . For simplicity, it was supposed

that Ap=0.

oo+ #oOE 1004 B M

(@) (k)
o0 an-
+ + 4 2
" + kgOnn) G2 % R N CRER RSN
0 0T H

k() = B (rya 1) F ¥ e (2, 1)
60 60

2
b Ver 10y} ot * LY R I CORECY
Foxoxx ¥
40 + 40
+
30 30 Mok . e
a0 * 20 ,
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L + 2w e O
+ 4+ bt T
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Figure 1: Normalized eigenvalues of the matrix (FTF)V2 .
Conclusions

Analysis of Tablel and Figure 1 allows us to draw a conclusion that 9, 13 and 15 elastic parameters or
their linear combinations can be determined with the use of PP reflection coefficients (R), PP transmission
coefficients (T) and qP-wave velocities (V) , respectively. Joint utilization of the observed data increases the
number of recoverable parameters: (R+T) — 16; (R+V) — 18; (T+V) — 15 (the same parameters, that are
determined using gqP-wave velocities). In case of R+V it is impossible to restore deviations of the elastic
coefficients Ac,sand Ac,, and to separate the linear combination Ac,, +2Ac; -
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