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Abstract 
 An approximate scattering matrix for an interface separating two arbitrary anisotropic half-spaces is 
obtained. The matrix depends on perturbation of elastic coefficients, densities, and directions of wave 
propagation. Compact linearized formulas for the reflection/transmission coefficients are derived for a weak-
contrast interface and an anisotropic background. In case of an isotropic background the PP 
reflection/transmission coefficients are reduced to simple analytic equations expressed in terms of independent 
linear combinations of perturbations of normalized elastic coefficients and densities, which can be determined 
from observed data.  

Introduction 

 Approximate formulas for the reflection/transmission (R/T) coefficients are widely used to invert seismic 
data into the physical properties of a media, especially in amplitude-versus-offset (AVO) analysis and amplitude-
versus-azimuth (AVA) analysis, and to study the behavior of these coefficients in the neighborhood of a given 
direction.  
 Linearized formulas of the PP reflection/transmission coefficients for an arbitrarily weak-anisotropic 
perturbation of an isotropic medium were derived by Vavrycuk and Psencýk (1998), Psencýk and Vavrycuk 
(1998), Zillmer (1998). Klimes (2003) obtained approximate equations of the scattering matrix of an arbitrary 
oriented weak-contrast interface. Formulas of the PP reflection/transmission coefficients for a strong-contrast 
interface separating two weakly anisotropic half-spaces where derived by Zillmer (1997). 

Theory 
 Following these studies, let us consider a medium with two anisotropic half-spaces separated by plane 

03 =x  and denote the densities and the elastic parameters at the both half-spaces as )(iρ  and )(
,

i
nqmpλ , i=1,2, 

respectively.  
 Plane elastic waves in the half-spaces  i=1, 2 with a common frequency ω and an identical projection of a 
slowness vectors ( ))(

321
)( ;; ii sss αα =s  onto the plane 03 =x  are the sum of the waves with different modes α  and 

can be expressed in the following way: 
  ( ) ( ){ }tjbt iii −⋅=∑ rsaru ωα

α
α exp, )()()( ,            (1) 

where )(iaα  is a unit polarization vector, )(i
αb  is a scalar amplitude. The subscript α  denotes a type of waves: α=1, 

2, 3 correspond to the down-going qP, S1, S2 waves, while α=4, 5, 6 correspond to up-going qP, S1, S2 waves, 
respectively. 
 Let )(i

mnC  denote a 3x3 matrix whose elements are the elastic parameters: )(
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wave presses per unit area of the interface 03 =x  with the force )()( ii j αα ω lf −= , where 
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 Let )(i
αv  and )(i

αn denote 6-dimensional column and row vectors respectively, determined in the following 

way:  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= )(

)(
)(

i

i
i

α

α
α l

a
v  , ( )TiTii )()()( ; ααα aln = , where T stands for transposition. 

 In each of the half-spaces i=1,2 let { })()( , ii ραa  are the eigenpairs of symmetrical Christoffel matrixes 
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,  which depend on the wave type,  α :  
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 Let )(
33
iC , i=1,2, be nonsingular. This is usually the case since these matrixes possess relatively great 

elements )(
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iλ , )(
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iλ  , )(
33,33

iλ   on their principal diagonals and relatively small ones elsewhere. 
 Equation (2) can be expressed as 
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 Substituting (2) and (4) in  (3) yields: 
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 Jointly, equations (4) and (5) demonstrate that the vectors )(i
αv and )(i

αn  are the right and left eigenvectors 
of  6х6 matrix 

     
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−

TAB
CA

M )()(

1)(
33

)(
)(

ii

ii
i               (6) 

associated with their eigenvalues, )(
3
is α , i.e. 
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          Unlike the Christoffel matrixes )(i
αG , the matrixes )(iM  do not contain the component )(

3
is α  of the slowness 

vector )(i
αs . For this reason, they are referred not to a concrete wave mode, but to wave packets as a whole.  

Let )(iE  be a matrix consisting of the column eigenvectors )(i
αv  of the matrix )(iM . From (7) it follows that the 

inverse matrix ( ) 1)( −iE  consists of the following row eigenvectors:  
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column eigenvectors of matrixes )(iM , i=1,2, for all the types of plane waves coming to and leaving the 
interface, respectively, and S be the elastic scattering matrix containing all the R/T coefficients.  
  If Y is nonsingular, its columns form a basis in a 6-dimensional vector space. In this case the scattering 
matrix S can be found as XYS 1−=  (Aki and Richards, 1980). The calculation of S is thus reduced to calculation 
of the eigenvectors of the matrixes М(i).  
  If the matrix )(iM undergoes a perturbation, )(iM∆ , caused by deviations of the elastic coefficients 

)()(
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i
pq
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nqmp C∈λ , the components 1s  and 2s  of slowness vectors )(i

αs , and densities ρ(i), the scattering matrix S 
obtains the following perturbation 

        SYYXYS 11 ⋅∆⋅−∆⋅=∆ −− .             (8) 
 The matrixes X  and Y  can be expressed as follows:  
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is splitting the matrix )(iE  into the four 3х3-submatrixes (i)
pqE  (i, p, q=1,2). 

 According to the perturbation theory, if the matrix )( iM  has eigenvalues )(
3
i
ps  of index 1, the first-order 

perturbation of the eigenvalues )(
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i
psδ  and eigenvectors )(i

pvδ  of this matrix can be calculated as: 
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 Note, equation (13) follows from the condition of normalization: 1)()( =+ i
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 If the matrix )(iM  has a multiple eigenvalue, )(
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that emerges due to some changes in the elastic coefficients, the components 1s  and 2s  of the slowness vector, 

and the densities ρ(i), with the values )(
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 The similar equation, in the tensor notation, was recently obtained by Klimes (2003). 
 Let us introduce a matrix ( ))()( i

qp
i d=D  and split it into four 3х3-submatrixes )(i

qpD , p,q=1,2. Then equation 
(11) can be rewritten in a compact form: 
           )()()( iii DEE ⋅=∆ .                 (16) 
Using (8), (9), and (16), the following equations for the perturbations of the matrixes X, Y and S can be 
obtained: 
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 In a particular case of half-spaces with similar physical properties, the medium can be considered as 
perturbation of the homogeneous background. Since S for homogeneous media is an identity matrix, expression 
(17) for a weak-contrast interface becomes much simpler: 
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  Equation (18) demonstrates how a perturbation of the scattering matrix for a weak-contrast interface 
depends on differences in the elasticity and density of the half-spaces and a perturbation of the slowness. 
  The dependence of the PP reflection/transmission coefficients and qP-wave phase velocities squared on a 
perturbation of a homogeneous isotropic background can be written as: 
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 α  and β  are P- and  S-wave velocities, ρ - is the density of a referent isotropic medium, ijc∆ are deviations of 
the elastic coefficients, ( )321 ,, nnn=n  is a unit direction vector. 
 In expressions (19) - (21), the factors at ija  and ijz are linearly independent functions. For this reason, the 
parameters ija  and ijz from the above equations can be determined uniquely using a sufficiently large number of 
reflection/transmission coefficients and phase velocities. Analysis this equations allows us to draw a conclusion 
that only the elastic parameters and their linear combinations from Table 1 can be determined independently and 
uniquely. 
 
        Table 1: Elastic parameters recoverable from observed variables ),( 21 nnkR , ),( 21 nnkT , ),( 21

2 nnvqP  

Rk , Tk , 2
qPv  11a  

22a  033 ra +  
16a  26a  

Rk  raa +− 23442  raa +− 13552  36452 aa −  12662 aa +   

Tk , 2
qPv  raa ++ 23442

2535462 aaa +−  
raa ++ 13552

1434562 aaa +−  
36452 aa +

3424 aa −  
12662 aa +

3515 aa −  
 

2
qPv  34a  35a     

 
 Equations (19)-(21) for various directions ni represent an overdetermined system of linear equations in 
the unknowns from Table 1. Let bFx =  be a matrix representation of the above system of equations.  

  In Figure 1, the eigenvalues of the matrix ( ) 21
FFT are displayed for various combinations of equations 

(19)-(21). The eigenvalues were normalized and arranged in a non-ascending order. The directions ni uniformly 
covered an incidence interval 4/0 πθ << and an azimuth interval πϕ 20 << . For simplicity, it was supposed 
that 0=∆ρ .  

  
                                             Figure 1:  Normalized eigenvalues of the matrix ( ) 21FFT .  
Conclusions 
 
 Analysis of Table1 and Figure 1 allows us to draw a conclusion that 9, 13 and 15 elastic parameters or 
their linear combinations can be determined with the use of PP reflection coefficients (R), PP transmission 
coefficients (T) and qP-wave velocities (V) , respectively. Joint utilization of the observed data increases the 
number of recoverable parameters: (R+T) – 16; (R+V) – 18; (T+V) – 15 (the same parameters, that are 
determined using qP-wave velocities). In case of R+V it is impossible to restore deviations of the elastic 
coefficients 45c∆ and 36c∆  and to separate the linear combination 6612 2 cc ∆+∆ . 
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