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Introduction 

Despite long research history and multiple successful applications the forward modelling of elastic 
waves propagating in anisotropic heterogeneous 3D media still exceeds time and cost limitations of 
routine use in the industry. Anisotropy is observed in real data because of thin layered, fracturing and 
intrinsic structure. Complex tectonics, salt domes and reefs, fractured carbonates in combination with 
anisotropy create unfavourable conditions for application of physically simplified approaches and 2D 
methods. Numerical wavefield simulation for each shot deals with cubes of size hundreds 
wavelengths. From implementation viewpoint it is important to subdivide the problem by smaller 
independent parts to minimize communication and synchronization overheads. Time domain 
approaches require about 10 measures per wavelength to preserve wavelet. To propagate 9 wavefield 
components (3 partial displacement velocities or shifts, 3 compression stresses and 3 shear stresses) 
one needs hundreds gigabytes per shot. Frequency domain approaches can benefit from use of sparse 
models. However, in most cases numeric simulation is applied for analysis of small inhomogeneities 
and thin layered zones improper to high frequency ray tracing approximation. This results in similar 
memory requirements. Forward modelling review of Verieux et al. (2009) shows that 3D time domain 
simulation mostly surpasses frequency domain methods despite their ability to reuse inversed 
impedance matrix for multiple shots. The state-of-the-art 3D elastic modelling was discussed by 
Petersson (2009), Lisitsa and Vishnevskiy (2010). Lisitsa and Vishnevskiy proposed a memory 
efficient finite-difference solution of 3D elastic anisotropic problem.  
 
Diverse efforts were put in acceleration of 3D elastic anisotropic modelling by use of specialized 
hardware/software tools. Komatitsch et al. (2010) reported 25-50 times acceleration achieved on 
NVIDIA GPU cluster under CUDA. Lavreniuk et al. (2011) discussed grid technology application. 
Nevertheless the computational cost of the problem considerably exceeds practical limitations.  
 
3D modelling can be simplified if the medium properties are fixed along some direction. Such type 
models are called 2.5D ones. One source line computed in 2.5D model can be replicated to produce 
full 3D survey. Thus the total problem size is decreased dozen times. Besides, model itself is 
described by 2D arrays instead of 3D ones. Transition from 3D to 2.5D model makes it impossible to 
estimate illumination of target horizons or optimize acquisition geometry. However, such tasks are 
pretty good solved by ray tracing. 2.5D forward modelling instead helps to investigate benefits from 
multi-component survey, effects of inaccuracy in anisotropy estimation, resolution of a processing 
batch etc. Variety of 2.5D modelling applications were described in Kostyukevych and Roganov 
(2010). Here we discuss computational benefits of the 2.5D approach, synergy of 2.5D with GPU and 
applicability of interpolation techniques for additional acceleration.  

Method 

Song and Williamson (1995) reduced the problem of 2.5D acoustic modelling for a constant density 
medium to a linear system of Fourier-transform equations for time and Y variables. They solved the 
system of equations by LU-decomposition of the right part matrix. Cao and Greenhalgh (1998) 
deduced stability conditions and proposed the unilateral equation for suppression of reflection at 
absorbing boundaries. Neto and Costa (2006) have proposed a 2.5D simulation method for elastic 
isotropic and anisotropic media. However, they have applied the theory only for isotropic and 
transversally isotropic medium. 2.5D implementations for arbitrary 3D TTI anisotropy were presented 
by Silva Neto, Costa and Novais (2007) and Kostyukevych et al. (2008).  
 
3D elastic anisotropic system of equations expresses Hooke’s law combined with Newton’s 2nd law: 
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where  321 xxxX   means a point in 3D space, nu  denote displacement velocities, nm  are 
components of a stress tensor. Parameters of the geology media are stiffness tensor   and density  . 
Source signal is encoded by the vector functions of source forces nf  and moment forces nmM . Both 
type forces are zero out of source.  

In 2.5D case for arbitrary y     zxzyx ,0,,,   and    zxzyx ,0,,,   . So it is convenient to 
represent the wavefield in Fourier domain by its decomposition along the axis 2x : 
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where  31
~ xxX  . The system (1) can be re-written in the space Fourier domain (  3,1q ): 
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Numeric wave propagation simulation according to (3) in the form of the second order central finite-
difference scheme on three staggered grids was described in Kostyukevych et al. (2008).  
 
To avoid numerical dispersion and aliasing one has to use reasonably big space frequency diapason 
and dense sampling. Lavreniuk et al. (2011) have shown the computational complexity cut down 
because of frequency decomposition (3) is moderate: 
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where 15..5W  is the minimal number of grid points per wavelength. Time of recording maxt , max 
velocity maxV , diapason of crossline offsets from miny  and maxy  are problem dependent. For deep 
target objects maxt  is big and under fixed offsets theoretical speedup (4) becomes smaller than 1. In 
other words computational complexity can be higher than for full 3D solution of the same problem. 
But the memory requirements are decreased dramatically. 2.5D uses just 160 bytes per cell of 2D grid 
to store both the wavefield state and the model for single space frequency. Quasy-2D sub-problems of 
different space frequencies are solved independently. As result 2.5D simulation task can be easy 
divided by hundreds or thousands parts which can be computed by GPU cards in the most efficient 
mode: without data reload, using single floating point precision and local calculations only. Space 
domain results are obtained by inverse Fourier transform of the quasy-2D solutions. The inverse 
Fourier transform is perfectly scalable and fits to GPU implementation by parts. 
 
Additional acceleration of 2.5D method can be obtained for theoretical models which contain 
relatively small number of interfaces. In such cases seismograms are sparse in space domain including 
lines along the axis 2x . Hennenfent and Herrmann (2008) have shown that random/jittered 
undersampling of a space domain signal which sparse in frequency domain generates low amplitude 
noise in spectrum. The same statement is right back direction. In sparse 2.5D case one can compute 
just a random portion of quasy-2D seismograms. The noise can be removed then by linear threshold. 
Interpolation instead of simple ignoring the absent frequencies improves the method. 

Experiments 

Tests (Fig. 1) show expected preference of modern GPUs over outdated GTX 8800. Mid level 
GTX480 unexpectedly approached professional Tesla. Probably it’s because of single precision math. 
Speedup has been estimated relative to single core of CPU Intel Xeon E5345 (2.33GHz). 
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Figure 1: GPU calculation time and speedup for models “3-walls”, “Marmousi”, “Fracture”. 

 
Figure 2: Model and signal mask (left column), correct sampling, regular undersampling, random 

undersampling, random undersampling with spectrum interpolation (right column). 
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Figure 3: Signal to noise ratio for 3 undersampling and 3 interpolation methods. 
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Figure 2 illustrates the random undersampling on a simple 2.5D model with 3D TTI anisotropy. The 
synthetic seismograms were generated by simulation of 2 sec wavefield propagation in a cube of size 
2.5 km in each direction. The simulation grid cell is 2.5 m. In full 3D case one need 216 GB to place 
both wavefield and model. In full 2.5D case 581 quasy-2D problems of size 432 MB has been solved. 
Simulation complexity is about 2 times smaller then for 3D (but acceleration is much higher). Results 
are shown in the 2nd  column. Regular 4 times undersampling (3rd column) results in strong noise from 
two mirror sources. Random 4 times undersampling (4th column) dissipates the mirror signals. But 
noise amplitudes left relatively big, especially for small times. Random 4 times undersampling with 
trigonometric local interpolation of spectrum provides low noise. (Signal to noise energy ratio is 105). 
 
Figure 3 demonstrates efficiency of random undersampling for various parameters. Interpolation of 
frequencies stable improve signal to noise energy ratio for about an order. 

Conclusions  

2.5D elastic anisotropic method of finite-difference forward modelling can generate realistic 3D 
synthetic seismograms for geometrically simplified but detailed models with arbitrary 3D TTI 
anisotropy and fracturing. Both high level and low level GPUs provide high performance for 2.5D.  
 
Additional 3-4 times acceleration can be obtained for simple models by random undersampling with 
spectra interpolation for the cost of about 1% noise. 
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