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SUMMARY
We derive "quasi-acoustic" approximations valid for qSV-wave propagation in transversely isotropic and
tilted transversely isotropic media by applying approximation extracted from acoustic approximation for
qP-wave propagation. One approximation has the same accuracy as qP-wave acoustic approximation for
the same range of horizontal slowness, the other approximations are wide-angle approximations.
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INTRODUCTION 
There are many approximations to the slowness surface in a transversely isotropic (VTI) 
medium both for qP- and qSV-waves. The quasi-acoustic approximation introduced by 
Akhalifah (1998) is of the great help for processing, modeling and interpretation of qP-wave 
data in a VTI medium. The number of parameters to define the qP-wave propagation in quasi-
acoustic approximation is significantly reduced comparing with exact expression, while the 
approximation is practically accurate for realistic values of anisotropy parameters. 
In our paper we define the quasi-acoustic approximation not as approximation to the medium 
parameters but as the special type of approximation to the slowness surface. We start with 
analyzing of the slowness surface for qP-waves, extract the approximation, which results in 
quasi-acoustic approximation, and then extend this approach to the slowness surface for qSV-
waves. By doing so, we obtain the series of “quasi-acoustic” approximations for qSV-waves. 
The accuracy of approximations is compared for a simple VTI model. We also illustrate the 
applicability of “quasi-acoustic” approximation for traveltime computation in a tilted 
transversely isotropic medium. 
 
QUASI-ACOUSTIC APPROXIMATION FOR qP WAVES 
The quasi-acoustic approximation was proposed by Alkhalifah (1998) for qP-wave seismic 
data processing. The basic idea behind this approximation is setting the vertical qSV-wave 
velocity to zero ( 0 0β = ). Since 0β  is excluded, only three parameters are required to define 
qP-wave propagation in the VTI medium. These parameters are: the vertical qP-wave velocity 

0α  and Thomsen’ s (1986) anisotropy parameters ε  and δ . For imaging of qP-wave data, 

these parameters are composed into the normal moveout velocity 0 1 2PPv α δ= +  and 

parameter ( ) ( )1 2η ε δ δ= − + . In quasi-acoustic approximation the equation for vertical 
slowness for qP-wave takes the form 
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where p is horizontal slowness. 
 
THE qP-WAVE QUASI-ACOUSTIC APPROXIMATION 
The vertical slowness squared for qP- and qSV-waves can be given as (Stovas and Ursin, 
2003) 
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The approximate behaviour of ( )S p  at p 0=  is ( ) ( )2 2 2
0 0S p 2 1 2 pσγ δ α≈ + . Let us 

approximate function ( )S p  for the range of horizontal slowness qP0,P⎡ ⎤⎣ ⎦  corresponding to 

qP-wave propagating region such that to preserve both the behavior at p 0=  and limit of  

( )S p  at qPp P= , ( ) 2
qP 0S p P 2σγ= = . 
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Substituting approximation (4) into equation (2) results exactly in the same expression 
derived by Alkhalifah (1998) for acoustic approximation (see equation (1)). 
 
QUASI-ACOUSTIC APPROXIMATIONS OF qSV-WAVE 
If the classic acoustic approximation is defined not by setting 0β  to be zero, but by the 

approximation of ( )S p  given in equation (4), we can derive completely new equations for 
qSV-wave propagation. To be used for qSV-wave, the approximation (4) has to be rewritten 
as 
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Let us keep approximate behaviour of function ( )S p  at p 0=  and preserve value of ( )S p  at 

qSVp P=  (corresponding to horizontal propagation of qSV waves). It gives the new 

approximation for function ( )S p  
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The third “quasi-acoustic” qSV-wave approximation can be obtained by analyzing the phase 
slowness surface in a VTI medium (including both qP and qSV surfaces) which can be 
written as 
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If point in the slowness space ( )p,q  belongs to qP-wave slowness surface, the following 

approximation can be used: 2 2 2
0p q 1 α+ ≈ . Substituting this approximation into equation (7) 

and reducing the multiplier ( )2 2
0 01 1β α−  results in the classical qP-wave quasi-acoustic 

approximation (1). Similar, if point belongs to qSV-wave slowness surface, the following 
expression is approximately valid, ( ) 2 2 2

01 2 p q 1ε β+ + ≈ . This approximation being 

substituted into equation (7) also results in reducing the multiplier ( )2 2
0 01 1β α− , and finally 

gives ( )( ) ( )2 2 2 2 2 2
0 0 0q 1 1 p 1 2 pβ β β σ β≈ − + , which can be considered as a new “quasi-

acoustic” approximation for qSV waves. Similar to quasi-acoustic approximation (1), this 
approximation has two parameters only. From this approximation we can compute the 
corresponding function ( )S p  as follows 
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TRAVELTIME-OFFSET AND PHASE VELOCITY EQUATIONS 
The offset and traveltime equations for qSV-wave can be given using the aneliptic function 

( )S p  as follows (Ursin and Stovas, 2006) 
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where 0t  is two-way vertical traveltime for qSV-wave and ( ) ( )S p dS p dp′ = .  Substituting 

corresponding functions ( )S p  from the quasi-acoustic qSV-wave approximations results in 
different expressions for offset and traveltime parametric equations.  
The qSV-wave phase velocity and phase angle equations can be computed by 
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Using the approximations (5, 6 and 8), results in the different phase velocity approximations. 
All phase velocity approximations have no anomalous behavior as it was shown in Grechka et 
al. (2004) for qSV-wave in qP-wave acoustic approximation. Note that in weak-anisotropy 
approximation, all phase velocity approximations converge to the weak-anisotropy 
approximation from exact phase velocity squared equation (Thomsen, 1986). 
 
qSV-WAVE SLOWNESS SURFACE FOR TTI MEDIUM 
Exact and approximate equations ( )1 2 3F p , p , p 0=  which define the slowness surface for 

TTI medium with the symmetry axis ( )T
3 cos sin , sin sin , cosϕ α ϕ α α=u  can be obtained 

from equation (2) with use of exact (3) and approximate (5, 6 and 8) values of ( )S p  by the 

variables change 2 2
1 2p w w= +  and 3q w= , where 
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To find explicit expression for ( )3 1 2p p , p  we have to solve equation ( )1 2 3F p , p , p 0=  for 

3p . It can be done by Newton/Raphson-like iterative procedure. The initial value is chosen for 
isotropic medium with shear velocity 0β . This method can be implemented in computation of 
first arrivals in heterogeneous TTI medium using the finite-difference method (for example, 
upwind ENO Runge-Kutta method), as it has been shown in Roganov (2006) for acoustic qP-
waves. 
 
NUMERICAL RESULTS 
To test the qSV-wave “quasi-acoustic approximations given in equations (5, 6 and 8, namely 
approximations 1, 2 and 3, respectively) we use single layer VTI model with parameters: 

0 2.0 km sα = , 0 1.0 km sβ = , 0.1ε =  and 0.05δ = . In Figure 1 we show the errors in 
vertical slowness, traveltime and phase velocity for qSV-wave computed from quasi-acoustic 
approximations. One can see that the approximation 1 performs the best in the range of 
horizontal slowness which correspond to the qP-wave propagation range. For larger values of 
horizontal slowness, the error in approximation 1 rapidly increases. Approximation 3 
performs better then approximation 2. It is seen that the approximation 1 is extremely 
accurate for traveltime up to offset/depth equal 1. For larger offset it is very difficult to 
choose the best approximation. For small phase angles approximation 1 performs the best. For 
the entire range of phase angles, one can choose approximation 3. 
The accuracy of quasi-acoustic approximation for qSV-wave we illustrate on the example 
with TTI medium with parameters mentioned above and the symmetry axis being located in 
the plane 1 3X X  and tilted with o30α = . The source is located at 1 2x 0, x 0= =  and 

3x 1000m= . In Figure 2 one can see the error in first arrival traveltime ( exact apprτ τ− ) 
computed with the finite-difference scheme using exact and approximate (8) equations for 
vertical slowness. One can see that errors in traveltime are relatively small. 
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CONCLUSIONS  
We derive the series of “quasi-acoustic” approximation for qSV-waves, which do not require 
setting the vertical qP-or qSV-wave velocity to be zero, with the special type of 
approximation to the slowness surface. The approximations are compared for vertical 
slowness, traveltime and phase velocities in one numerical example. We show that 
approximations have different accuracy depending on the range of horizontal slowness (offset 
and phase angle) and number of the approximation parameters. The approximation 1 is very 
accurate for the range of horizontal slowness corresponding to qP-wave propagation. 
Therefore, it can be used for processing and modeling of qSV-waves within the C-wave 
experiment. The approximations 2 and 3 are valid for the entire range of horizontal slowness 
for qSV-wave, while approximation 3 has less number of parameters. We illustrate the 
applicability of “quasi-acoustic” approximation for traveltime computation in TTI medium. 
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Figure 1. Error in vertical slowness (to the left), traveltime (in the middle) and phase velocity 
(to the right) from quasi-acoustic qSV-wave approximations (VTI model). 

 
Figure 2. Exact (to the left), approximate (in the middle) traveltime and traveltime errors (to 
the right) from quasi-acoustic qSV-wave approximation 3 (TTI model). 

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

Distance, m                   model 1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D
ep

th
, m

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

Distance, m                   model 1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D
ep

th
, m

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

Distance, m                   model 1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D
ep

th
, m

-
-
-
-
-
-
-
-
-
-
0

3
4
6
7
9

EXACT APPROX DIFF 

0.0 0.2 0.4 0.6 0.8 1.0

-0.02

-0.01

0.00

0.01

0.02

model 1

Er
ro

r i
n 

ve
rt

ic
al

 s
lo

w
ne

ss
, s

/k
m

Horizontal slowness, s/km

 QA approximation 1
 QA approximation 2
 QA approximation 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

model 1

 QA approximation 1
 QA approximation 2
 QA approximation 3

Er
ro

r i
n 

tr
av

el
tim

e,
 s

Offset/depth
0 10 20 30 40 50 60 70 80 90

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

model 1 QA approximation 1
 QA approximation 2
 QA approximation 3

Er
ro

r i
n 

ph
as

e 
ve

lo
ci

ty
, k

m
/s

Phase angle, degrees


